1-4hit |
Man FENG Lenan WU Jiajia DING Chenhao QI
The extended binary phase shift keying (EBPSK) transmission system with ultra narrow bandwidth has excellent BER performance, which raises many doubts with the researchers. Therefore, on the premise of the existence of a special filter that can transform the modulated phase information into amplitude information, the theoretical BER formula of EBPSK system in Additive White Gaussian Noise (AWGN) channel has been deduced. This paper gives the theoretical values of the parameters in the above BER formula and discusses the effects of parameters on BER firstly. Then the paper shows that the special impacting filter satisfies the above assumption, therefore, in the frame of binary detection theory, the excellent performance of high-efficiency EBPSK system can be explained and the correction of the theoretical BER formula can be validated.
In this letter, we apply recently proposed compressive projection principal component analysis (CPPCA) for MIMO channel feedback. A novel scheme with compressed feedback and efficient reconstruction is presented. Simulation results based on 3GPP spatial channel model (SCM) demonstrate the scheme is beneficial for large-scale MIMO systems.
To overcome the shortcomings of conventional cellular positioning, a novel cooperative location algorithm that uses the available peer-to-peer communication between the mobile terminals (MTs) is proposed. The main idea behind the proposed approach is to incorporate the long- and short-range location information to improve the estimation of the MT's coordinates. Since short-range communications among MTs are characterized by high line-of-sight (LOS) probability, an improved spring-model-based cooperative location method can be exploited to provide low-cost improvement for cellular-based location in the non-line-of-sight (NLOS) environments.
In this letter, the sparse recovery algorithm orthogonal matching pursuit (OMP) and subspace pursuit (SP) are applied for MIMO OFDM channel estimation. A new algorithm named SOMP is proposed, which combines the advantage of OMP and SP. Simulation results based on 3GPP spatial channel model (SCM) demonstrate that SOMP performs better than OMP and SP in terms of normalized mean square error (NMSE).