1-2hit |
Peng CHENG Ivan LEE Jeng-Shyang PAN Chun-Wei LIN John F. RODDICK
Association rule mining is a powerful data mining tool, and it can be used to discover unknown patterns from large volumes of data. However, people often have to face the risk of disclosing sensitive information when data is shared with different organizations. The association rule mining techniques may be improperly used to find sensitive patterns which the owner is unwilling to disclose. One of the great challenges in association rule mining is how to protect the confidentiality of sensitive patterns when data is released. Association rule hiding refers to sanitize a database so that certain sensitive association rules cannot be mined out in the released database. In this study, we proposed a new method which hides sensitive rules by removing some items in a database to reduce the support or confidence levels of sensitive rules below specified thresholds. Based on the information of positive border rules and negative border rules contained in transactions, the proposed method chooses suitable candidates for modification aimed at reducing the side effects and the data distortion degree. Comparative experiments on real datasets and synthetic datasets demonstrate that the proposed method can hide sensitive rules with much fewer side effects and database modifications.
Peng CHENG Chun-Wei LIN Jeng-Shyang PAN Ivan LEE
Sharing data might bring the risk of disclosing the sensitive knowledge in it. Usually, the data owner may choose to sanitize data by modifying some items in it to hide sensitive knowledge prior to sharing. This paper focuses on protecting sensitive knowledge in the form of frequent itemsets by data sanitization. The sanitization process may result in side effects, i.e., the data distortion and the damage to the non-sensitive frequent itemsets. How to minimize these side effects is a challenging problem faced by the research community. Actually, there is a trade-off when trying to minimize both side effects simultaneously. In view of this, we propose a data sanitization method based on evolutionary multi-objective optimization (EMO). This method can hide specified sensitive itemsets completely while minimizing the accompanying side effects. Experiments on real datasets show that the proposed approach is very effective in performing the hiding task with fewer damage to the original data and non-sensitive knowledge.