Author Search Result

[Author] Danlei XING(1hit)

1-1hit
  • Cross-Project Defect Prediction via Semi-Supervised Discriminative Feature Learning

    Danlei XING  Fei WU  Ying SUN  Xiao-Yuan JING  

     
    LETTER-Software Engineering

      Pubricized:
    2020/07/07
      Vol:
    E103-D No:10
      Page(s):
    2237-2240

    Cross-project defect prediction (CPDP) is a feasible solution to build an accurate prediction model without enough historical data. Although existing methods for CPDP that use only labeled data to build the prediction model achieve great results, there are much room left to further improve on prediction performance. In this paper we propose a Semi-Supervised Discriminative Feature Learning (SSDFL) approach for CPDP. SSDFL first transfers knowledge of source and target data into the common space by using a fully-connected neural network to mine potential similarities of source and target data. Next, we reduce the differences of both marginal distributions and conditional distributions between mapped source and target data. We also introduce the discriminative feature learning to make full use of label information, which is that the instances from the same class are close to each other and the instances from different classes are distant from each other. Extensive experiments are conducted on 10 projects from AEEEM and NASA datasets, and the experimental results indicate that our approach obtains better prediction performance than baselines.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.