1-3hit |
Anh-Ngoc LE Dong-Won KUM You-Ze CHO Chai-Keong TOH
This paper addresses the interference and load imbalance problems in multi-radio infrastructure mesh networks where each mesh node is equipped with multiple radio interfaces and a subset of nodes serve as Internet gateways. To provide backbone support, it is necessary to reduce interference and balance load in Wireless Mesh Networks (WMNs). In this paper, we propose a new Load-Aware Routing Metric, called LARM, which captures the differences in transmission rates, packet loss ratio, intra/inter-flow interference and traffic load in multi-radio mesh networks. This metric is incorporated into the proposed load-balancing routing, called LBM, to provide load balancing for multi-radio mesh network. Simulation results show that LARM provides better performance compared to WCETT and hop-count routing metrics in LBM routing protocol.
Yang LI Dong-Won KUM Ju-Eun KANG You-Ze CHO
This paper analyzes the limitations of the multihoming support in the Proxy Mobile IPv6 protocol, then proposes an enhanced multihoming support scheme based on a per-interface address configuration method. The proposed scheme can provide a more flexible multihoming support and also maintain application session continuity during a handoff between two interfaces by using IPv6 extension headers. Plus, flow distribution with filters is also used to realize the advantages of multihoming. Simulation results with the OPNET validate the proposed multihoming support scheme for convergent networks.
Dong-Won KUM Ajmal KHAN You-Ze CHO
This paper proposes an efficient broadcast scheme based on traffic density measurement to mitigate broadcast storms in Vehicular Ad Hoc Networks (VANETs). In a VANET, the number of vehicles that rebroadcasts a message is closely related with the collision ratio of the message, so a well-designed broadcast scheme should consider traffic density when rebroadcasting a message. The proposed scheme introduces a traffic density measurement scheme and broadcast scheme for VANET. It is based on the slotted p-persistence scheme, but the rebroadcast procedure is enhanced and the rebroadcast probability p is controlled dynamically according to the estimated traffic density. Simulation results demonstrate that the proposed scheme outperforms existing schemes in terms of the end-to-end delay and collision ratio.