1-2hit |
Qiuli CHEN Ming HE Xiang ZHENG Fei DAI Yuntian FENG
Software-defined networking (SDN) is recognized as the next-generation networking paradigm. The software-defined architecture for underwater acoustic sensor networks (SDUASNs) has become a hot topic. However, the current researches on SDUASNs is still in its infancy, which mainly focuses on network architecture, data transmission and routing. There exists some shortcomings that the scale of the SDUASNs is difficult to expand, and the security maintenance is seldom dabble. Therefore, a scalable software-definition architecture for underwater acoustic sensor networks (SSDUASNs) is introduced in this paper. It realizes an organic combination of the knowledge level, control level, and data level. The new nodes can easily access the network, which could be conducive to large-scale deployment. Then, the basic security authentication mechanism called BSAM is designed based on our architecture. In order to reflect the advantages of flexible and programmable in SSDUASNs, security authentication mechanism with pre-push (SAM-PP) is proposed in the further. In the current UASNs, nodes authentication protocol is inefficient as high consumption and long delay. In addition, it is difficult to adapt to the dynamic environment. The two mechanisms can effectively solve these problems. Compared to some existing schemes, BSAM and SAM-PP can effectively distinguish between legal nodes and malicious nodes, save the storage space of nodes greatly, and improve the efficiency of network operation. Moreover, SAM-PP has a further advantage in reducing the authentication delay.
Qiuli CHEN Ming HE Fei DAI Chaozheng ZHU
The changes of temperature, salinity and ocean current in underwater environment, have adverse effects on the communication range of sensors, and make them become temporary failure. These temporarily misbehaving sensors are called dumb nodes. In this paper, an energy-efficient connectivity re-establishment (EECR) scheme is proposed. It can reconstruct the topology of underwater acoustic sensor networks (UASNs) with the existing of dumb nodes. Due to the dynamic of underwater environment, the generation and recovery of dumb nodes also change dynamically, resulting in intermittent interruption of network topology. Therefore, a multi-band transmission mode for dumb nodes is designed firstly. It ensures that the current stored data of dumb nodes can be sent out in time. Subsequently, a connectivity re-establishment scheme of sub-nodes is designed. The topology reconstruction is adaptively implemented by changing the current transmission path. This scheme does't need to arrange the sleep nodes in advance. So it can reduce the message expenses and energy consumption greatly. Simulation results show that the proposed method has better network performance under the same conditions than the classical algorithms named LETC and A1. What's more, our method has a higher network throughput rate when the nodes' dumb behavior has a shorter duration.