1-3hit |
Takuya WATANABE Mitsuaki AKIYAMA Fumihiro KANEI Eitaro SHIOJI Yuta TAKATA Bo SUN Yuta ISHII Toshiki SHIBAHARA Takeshi YAGI Tatsuya MORI
This paper reports a large-scale study that aims to understand how mobile application (app) vulnerabilities are associated with software libraries. We analyze both free and paid apps. Studying paid apps was quite meaningful because it helped us understand how differences in app development/maintenance affect the vulnerabilities associated with libraries. We analyzed 30k free and paid apps collected from the official Android marketplace. Our extensive analyses revealed that approximately 70%/50% of vulnerabilities of free/paid apps stem from software libraries, particularly from third-party libraries. Somewhat paradoxically, we found that more expensive/popular paid apps tend to have more vulnerabilities. This comes from the fact that more expensive/popular paid apps tend to have more functionality, i.e., more code and libraries, which increases the probability of vulnerabilities. Based on our findings, we provide suggestions to stakeholders of mobile app distribution ecosystems.
Fumihiro KANEI Daiki CHIBA Kunio HATO Katsunari YOSHIOKA Tsutomu MATSUMOTO Mitsuaki AKIYAMA
While the online advertisement is widely used on the web and on mobile applications, the monetary damages by advertising frauds (ad frauds) have become a severe problem. Countermeasures against ad frauds are evaded since they rely on noticeable features (e.g., burstiness of ad requests) that attackers can easily change. We propose an ad-fraud-detection method that leverages robust features against attacker evasion. We designed novel features on the basis of the statistics observed in an ad network calculated from a large amount of ad requests from legitimate users, such as the popularity of publisher websites and the tendencies of client environments. We assume that attackers cannot know of or manipulate these statistics and that features extracted from fraudulent ad requests tend to be outliers. These features are used to construct a machine-learning model for detecting fraudulent ad requests. We evaluated our proposed method by using ad-request logs observed within an actual ad network. The results revealed that our designed features improved the recall rate by 10% and had about 100,000-160,000 fewer false negatives per day than conventional features based on the burstiness of ad requests. In addition, by evaluating detection performance with long-term dataset, we confirmed that the proposed method is robust against performance degradation over time. Finally, we applied our proposed method to a large dataset constructed on an ad network and found several characteristics of the latest ad frauds in the wild, for example, a large amount of fraudulent ad requests is sent from cloud servers.
Hiroki NAKANO Fumihiro KANEI Yuta TAKATA Mitsuaki AKIYAMA Katsunari YOSHIOKA
Android app developers sometimes copy code snippets posted on a question-and-answer (Q&A) website and use them in their apps. However, if a code snippet has vulnerabilities, Android apps containing the vulnerable snippet could also have the same vulnerabilities. Despite this, the effect of such vulnerable snippets on the Android apps has not been investigated in depth. In this paper, we investigate the correspondence between the vulnerable code snippets and vulnerable apps. we collect code snippets from a Q&A website, extract possibly vulnerable snippets, and calculate similarity between those snippets and bytecode on vulnerable apps. Our experimental results show that 15.8% of all evaluated apps that have SSL implementation vulnerabilities (Improper host name verification), 31.7% that have SSL certificate verification vulnerabilities, and 3.8% that have WEBVIEW remote code execution vulnerabilities contain possibly vulnerable code snippets from Stack Overflow. In the worst case, a single problematic snippet has caused 4,844 apps to contain a vulnerability, accounting for 31.2% of all collected apps with that vulnerability.