1-7hit |
Rui JI Jinchun GAO Gang XIE Qiuyan JIN
Coaxial connectors are extensively used in electrical systems and the degradation of the connector can alter the signal that is being transmitted and leads to faults, which is one of the major causes of low communication quality. In this work, the failure features caused by the degraded connector contact surface were studied. The relationship between the DC resistance and decreased real contact areas was given. Considering the inductance properties and capacitive coupling at high frequencies, the impedance characteristics of the degraded connector were discussed. Based on the transmission line theory and experimental measurement, an equivalent lump circuit of the coaxial connector was developed. For the degraded contact surface, the capacitance was analyzed, and the frequency effect was investigated. According to the high frequency characteristics of the degraded connector, a fault detection and location method for coaxial connectors in RF system was developed using a neural network method. For connectors suffering from different levels of pollution, their impedance modulus varies continuously. Considering the range of the connector's impedance parameters, the fault modes were determined. Based on the scattering parameter simulation of a RF receiver front-end circuit, the S11 and S21 parameters were obtained as feature parameters and Monte Carlo simulations were conducted to generate training and testing samples. Based on the BP neural network algorithm, the fault modes were classified and the results show the diagnosis accuracy was 97.33%.
Junyang SHEN Gang XIE Siyang LIU Lingkang ZENG Jinchun GAO Yuanan LIU
Amidst conflicting views about whether soft cooperative energy detection scheme (SCEDS) outperforms hard cooperative energy detection scheme (HCEDS) greatly in cognitive radio, we establish the bridge that mathematically connects SCEDS and HCEDS by closed approximations. Through this bridge, it is demonstrate that, if the number of detectors of HCEDS is 1.6 times as that of SCEDS, they have nearly the same performance which is confirmed by numerical simulations, enabling a quantitative evaluation of the relation between them and a resolution of the conflicting views.
Lingkang ZENG Yupei HU Gang XIE Yi ZHAO Junyang SHEN Yuan'an LIU Jin-Chun GAO
In this paper, we focus on the adaptive resource allocation issue for uplink OFDMA systems. The resources are allocated according to a proportional fairness criterion, which can strike an alterable balance between fairness and efficiency. Optimization theory is used to analyze the multi-constraint resource allocation problem and some heuristic characteristics about the optimal solution are obtained. To deal with the cohesiveness of the necessary conditions, we resort to bargaining theory that has been deeply investigated in game theory. Firstly, we summarize some assumptions about bargaining theory and show their similarities with the resource allocation process. Then we propose a priority-ranked bargaining model, whose primary contribution is applying the economic thought to the resource allocation process. A priority-ranked bargaining algorithm (PRBA) is subsequently proposed to permit the base station to auction the subcarriers one by one according to the users' current priority. By adjusting the predefined rate ratio flexibly, PRBA can achieve different degrees of fairness among the users' capacity. Simulation results show that PRBA can achieve similar performance of the max-min scheme and the NBS scheme in the case of appropriate predefined rate ratio.
Xiaolei QI Gang XIE Yuanan LIU
The hybrid precoding (HP) technique has been widely considered as a promising approach for millimeter wave communication systems. In general, the existing HP structure with a complicated high-resolution phase shifter network can achieve near-optimal spectral efficiency, however, it involves high energy consumption. The HP architecture with an energy-efficient switch network can significantly reduce the energy consumption. To achieve maximum energy efficiency, this paper focuses on the HP architecture with switch network and considers a novel adaptive analog network HP structure for such mmWave MIMO systems, which can provide potential array gains. Moreover, a multiuser adaptive coordinate update algorithm is proposed for the HP design problem of this new structure. Simulation results verify that our proposed design can achieve better energy efficiency than other recently proposed HP schemes when the number of users is small.
Siyang LIU Gang XIE Zhongshan ZHANG Yuanan LIU
Two adaptive energy detectors are proposed for cognitive radio systems to detect the primary users. Unlike the conventional energy detector (CED) where a decision is made after receiving all samples, our detectors make a decision with the sequential arrival of samples. Hence, the sample size of the proposed detectors is adaptive. Simulation results show that for a desired performance, the average sample size of the proposed detectors is much less than that of the CED. Therefore, they are more agile than the CED.
This letter proposes a slot-based opportunistic spectrum access for cognitive radio networks. To reduce the slot-boundary impact, control frames are used to achieve channel reservation. The saturation throughput of our scheme is estimated by an analytical model. The accuracy of the model is validated by extensive simulation.
Linbo ZHAI Xiaomin ZHANG Gang XIE
This letter presents a model with queueing theory to analyze the performance of non-saturated IEEE 802.11 DCF networks. We use the closed queueing network model and derive an approximate representation of throughput which can reveal the relationship between the throughput and the total offered load under finite traffic load conditions. The accuracy of the model is verified by extensive simulations.