1-2hit |
Yizhi REN Zelong LI Lifeng YUAN Zhen ZHANG Chunhua SU Yujuan WANG Guohua WU
The recommend system has been widely used in many web application areas such as e-commerce services. With the development of the recommend system, the HIN modeling method replaces the traditional bipartite graph modeling method to represent the recommend system. But several studies have already showed that recommend system is vulnerable to shilling attack (injecting attack). However, the effectiveness of how traditional shilling attack has rarely been studied directly in the HIN model. Moreover, no study has focused on how to enhance shilling attacks against HIN recommend system by using the high-level semantic information. This work analyzes the relationship between the high-level semantic information and the attacking effects in HIN recommend system. This work proves that attack results are proportional to the high-level semantic information. Therefore, we propose a heuristic attack method based on high-level semantic information, named Semantic Shilling Attack (SSA) on a HIN recommend system (HERec). This method injects a specific score into each selected item related to the target in semantics. It ensures transmitting the misleading information towards target items and normal users, and attempts to interfere with the effect of the recommend system. The experiment is dependent on two real-world datasets, and proves that the attacking effect is positively correlate with the number of meta-paths. The result shows that our method is more effective when compared with existing baseline algorithms.
Qiuhua WANG Mingyang KANG Guohua WU Yizhi REN Chunhua SU
Secret key generation based on channel characteristics is an effective physical-layer security method for 5G wireless networks. The issues of how to ensure the high key generation rate and correlation of the secret key under active attack are needed to be addressed. In this paper, a new practical secret key generation scheme with high rate and correlation is proposed. In our proposed scheme, Alice and Bob transmit independent random sequences instead of known training sequences or probing signals; neither Alice nor Bob can decode these random sequences or estimate the channel. User's random sequences together with the channel effects are used as common random source to generate the secret key. With this solution, legitimate users are able to share secret keys with sufficient length and high security under active attack. We evaluate the proposed scheme through both analytic and simulation studies. The results show that our proposed scheme achieves high key generation rate and key security, and is suitable for 5G wireless networks with resource-constrained devices.