1-1hit |
Mitoshi FUJIMOTO Haiyan ZHAO Toshikazu HORI
High-speed wireless communication systems have attracted much attention in recent years. To achieve a high-speed wireless communication system that utilizes an ultra-wide-frequency band, a broadband antenna is required. However, it is difficult to obtain an antenna that has uniform characteristics in a broad frequency band. Moreover, propagation characteristics are distorted in a multi-path environment. Thus, the communication quality tends to degrade due to the distortion in the frequency characteristics of the wideband communication system. This paper proposes a quasi-inverse filter (QIF) to improve the compensation effect for the transmitter antenna. Furthermore, we propose a method that employs the newly developed QIF that compensates for frequency characteristic distortion. We evaluate different configurations for the compensation system employing a pre-filter and post-filter in the wideband communication system. The effectiveness of the QIF in the case of severe distortion is verified by computer simulation. The proposed method is applied to a disc monopole antenna as a concrete example of a broadband antenna, and the compensation effect for the antenna is indicated.