1-3hit |
Zunxiong LIU Xin XIE Deyun ZHANG Haiyuan LIU
The multi-step prediction model based on partial least squares (PLS) is established to predict short-term load series with high embedding dimension in this paper, which refrains from cumulative error with local single-step linear model, and can cope with the multi-collinearity in the reconstructed phase space. In the model, PLS is used to model the dynamic evolution between the phase points and the corresponding future points. With research on the PLS theory, the model algorithm is put forward. Finally, the actual load series are used to test this model, and the results show that the model plays well in chaotic time series prediction, even if the embedding dimension is selected a big value.
Zhengwei GONG Taiyi ZHANG Haiyuan LIU Feng LIU
Space-time coding (STC) schemes for communication systems employing multiple transmit and receive antennas have received considerable interest recently. On space-time coding, some algorithms with perfect channel state information (CSI) have been proposed. In certain fast varying situation, however, it may be difficult to estimate the channel accurately and it is natural to study the blind detection algorithm without CSI. In this paper, based on subspace, a new blind detection algorithm without CSI is proposed. Using singular value decomposition (SVD) on output signal, noise subspace and signal subspace, which keep orthogonal to each other, are obtained. By searching the intersection of the signal subspace and the limited symbol vector set, symbol detection is achieved. The simulations illustrate that the proposed algorithm significantly improves system performance by receiving more output signals relative to transmit symbols. Furthermore, the presented algorithm is robust to the fading channel that changes between two successive blocks.
Haiyuan LIU Taiyi ZHANG Ruiping ZHANG Feng LIU
For the performance deficiency of the pilot symbol aided channel estimation in orthogonal frequency division multiplexing (OFDM) systems, the wavelets network interpolation channel estimator is proposed. By contrast with conventional methods, wavelets network interpolation channel estimator can guarantee the high transmission rate and lower Bit error rates (BER). Computer simulation results demonstrate that the proposed channel estimation method exhibit an improved performance compared to the conventional linear channel estimation methods and is robust to fading rate, especially in fast fading channels.