1-6hit |
The open-vocabulary name recognition technique is one of the most challenging tasks in the application of automatic Chinese speech recognition technology. It can be used as the free name input method for telephony speech applications and automatic directory assistance systems. A Chinese name usually has two to three characters, each of which is pronounced as a single tonal syllable. Obviously, it is very confusing to recognize a three-syllable word from millions to billions of possible candidates. A novel interactive automatic-speech-recognition system is proposed to resolve this highly challenging task. This system was built as an open-vocabulary Chinese name recognition system using character-based approaches. Two important character-input speech-recognition modules were designed as backoff approaches in this system to complete the name input or to correct any misrecognized characters. Finite-state networks were compiled from regular grammar of syllable spellings and character descriptions for these two speech recognition modules. The possible candidate names cover more than five billions. This system has been tested publicly and proved a robust way to interact with the speaker. An 86.7% name recognition success rate was achieved by the interactive open-vocabulary Chinese name input system.
Shih-Chang WANG Jeng-Ping LIN Sy-Yen KUO
In this paper, we propose a novel fault-tolerant multicast algorithm for n-dimensional wormhole routed hypercubes. The multicast algorithm will remain functional if the number of faulty nodes in an n-dimensional hypercube is less than n. Multicast is the delivery of the same message from one source node to an arbitrary number of destination nodes. Recently, wormhole routing has become one of the most popular switching techniques in new generation multicomputers. Previous researches have focused on fault-tolerant one-to-one routing algorithms for n-dimensional meshes. However, little research has been done on fault-tolerant one-to-many (multicast) routing algorithms due to the difficulty in achieving deadlock-free routing on faulty networks. We will develop such an algorithm for faulty hypercubes. Our approach is not based on adding physical or virtual channels to the network topology. Instead, we integrate several techniques such as partitioning of nodes, partitioning of channels, node label assignments, and dual-path multicast to achieve fault tolerance. Both theoretical analysis and simulation are performed to demonstrate the effectiveness of the proposed algorithm.
A novel microstrip dual-mode bandpass filter with ultra-broad stopband is proposed using the aperture-backed stepped-impedance ring resonator (SIRR). This SIRR consists of low-impedance strips in the four bended corners and high-impedance strips in the four straight sides. With the cross-shaped aperture placed on the ground underneath the SIRR, the upper stopband is significantly broadened. In particular, the 2nd resonant frequency of this proposed SIRR is confirmed to exceed the four times of its 1st counterpart. The dual-mode filter with the passband of 7.5% at 1.59 GHz is then designed and implemented, demonstrating the measured stopband of 1.70-5.80 GHz and size reduction of 56.0%.
Highly conflicting evidence that may lead to the counter-intuitive results is one of the challenges for information fusion in Dempster-Shafer evidence theory. To deal with this issue, evidence conflict is investigated based on belief divergence measuring the discrepancy between evidence. In this paper, the pignistic probability transform belief χ2 divergence, named as BBχ2 divergence, is proposed. By introducing the pignistic probability transform, the proposed BBχ2 divergence can accurately quantify the difference between evidence with the consideration of multi-element sets. Compared with a few belief divergences, the novel divergence has more precision. Based on this advantageous divergence, a new multi-source information fusion method is devised. The proposed method considers both credibility weights and information volume weights to determine the overall weight of each evidence. Eventually, the proposed method is applied in target recognition and fault diagnosis, in which comparative analysis indicates that the proposed method can realize the highest accuracy for managing evidence conflict.
A novel class of microstrip bandpass filter is configured using the impedance transformers and an improved stepped impedance resonator (SIR). This SIR is composed of a central narrow strip section with an aperture on ground and two wide strip sections at the two sides. This low-high-low SIR resonator has a promising capability in achieving an extremely large ratio of first two resonant frequencies for design of a bandpass filter with ultra-broad stopband. The two quarter-wavelength transformers with low and high impedances, referred as to impedance- and admittance-inverters, are modeled and utilized as alternative types of inductive and capacitive coupling elements with highly tightened degrees for wideband filter design. After extensive investigation is made on the two transformers and the proposed SIR, the two novel bandpass filters are constructed, designed and implemented. Two sets of predicted and measured frequency responses over a wide frequency range both quantitatively exhibit their several attractive features, such as ultra-broad stopband with deep rejection and broadened dominant passband with low insertion loss.
A side-coupled microstrip open-loop resonator is presented for design of harmonic-suppressed bandpass filters with compact size. In geometry, the open-ended microstrip feed line is put in close proximity to the loop resonator at the opposite side of an opened-gap. In design, its length is properly lengthened to establish the orthogonal even- and odd-symmetrical current distributions along the two coupled strip conductors. It thus results in cancellation the 1st parasitic resonance. The two-stage open-loop filter is first constructed and its performance is studied under varied feed line lengths. Furthermore, a four-stage filter block is optimally designed at 2.52 GHz and its circuit sample is fabricated with the overall length less than 60% of one guided wavelength. The measured insertion loss at the 1st harmonic is higher than 30 dB, the stopband covers the range from 2.8 GHz to 7.0 GHz, and the dominant pass bandwidth is about 9.0%.