1-3hit |
Min YU Ru HUANG Xing ZHANG Yangyuan WANG Hideki OKA
An atomistic model for annealing simulation is presented. To well simulate both BED (Boron Enhanced Diffusion) and TED (Transient Enhanced Diffusion), the surface emission model, which describes the emission of point defects from surface during annealing, is implemented. The simulation is carried out for RTA annealing (1000 or 1050) after B implantation. The implantation energy varies from 0.5 keV to 13 keV. Agreements between simulation and SIMS data are achieved. Both BED and TED phenomena are characterized. The Enhancement of diffusion is discussed. The surface emission model is studied by simulation. The results shows that the surface emission has little effect on annealing of B 10 keV implantation while obvious effect on annealing of B 0.5 keV implantation. It indicates that the surface emission is much more necessary to simulate BED than TED.
Norio SADACHIKA Takahiro MURAKAMI Hideki OKA Ryou TANABE Hans Juergen MATTAUSCH Mitiko MIURA-MATTAUSCH
We have developed a compact double-gate metal-oxide-semiconductor field-effect transistor model for circuit simulation considering the volume inversion effect by solving the Poisson equation explicitly. It is verified that applied voltage dependence of the calculated potential values both at the surface and at the center of the silicon layer reproduce 2 dimensional device simulation results for any device structure, confirming the validity of the model for device optimization.
Yoshio EBINA Hideki OKADA Toshikatsu MIKI Ryuzo SHINGAI
Caenorhabditis elegans during feeding gives good moving biological images",in which motions of several pulsing organs are superposed on its head swing. A powerful method to extract dynamic features is presented. First step is to use a variance picture VAG4 in order to pick up active pixel coordinates of concerned moving objects. Superiority of VAG4 over usual variance picture VAG2 is shown quantitatively by a model of moving particles. Pulsing areas of C. elegans, are exhibited more clearly in VAG4 than VAG2. Second step is use of a new subtraction method to extract main frequency bands. FFT spectra are averaged in active positions where VAG4 is above threshold THVR in the square with 88 pixels (ONA). The power spectra averaged in the enlarged squares (ELA) are subtracted from those in ONA, in which ELA includes ONA in its centre position. Large peak bands emerge in the subtracted power spectra. The subtraction eliminates the effect of head swing by spatial averagings in ELA. This new emphasizing method is compared to another subtraction method. The characteristic frequency of periodical moving organs coincides well with the values observed by other research groups and our visual estimation of replayed VTR images. Thus the proposed extraction method is verified to work well in double superposed motions.