1-3hit |
Hiroe YAMAGUCHI Tomoaki OHTSUKI Iwao SASASE
In this paper, we propose multiple subcarrier modulation (MSM) for infrared wireless systems using punctured convolutional codes and variable amplitude block codes to minimize the average optical power by allocating the appropriate amplitudes to the puncturing bits. The proposed system maps the coded bits corresponding to zeros in the puncturing table to the amplitudes of subcarriers, while the rate-compatible punctured convolutional (RCPC) code deletes them. We compare two proposed systems with the conventional systems: one block code maps the coded bits corresponding to zeros in the puncturing table to zeros (proposed 1), and the other maps them to the appropriate values among 0, and 1 (proposed 2) so that the required bias can be minimized. We show that the proposed 2 can achieve the minimum required SNR at the same average optical power and the same information rate among all the systems.
Hiroe YAMAGUCHI Ryoko MATSUO Tomoaki OHTSUKI Iwao SASASE
In this paper, we propose an equalizer for indoor infrared wireless systems using on-off keying code-division multiple-access (OOK-CDMA). The proposed equalizer has a decision-feedforward filter to mitigate the effects of inter symbol interference (ISI) at the previous chip position of the sampling instant. We evaluate the performance of indoor infrared wireless systems using OOK-CDMA with three kinds of equalizers: the decision-feedback qualizer (DFE), the feedforward equalizer (FE), and the proposed equalizer. To estimate the impulse response, we use the training sequence that alternates '1' and '0' sequentially. Among three kinds of equalizers, we show that the system with the proposed equalizer can achieve the best bit error rate (BER) performance at high bit rate, while the system with the FE achieves the best BER performance when the bit rate is low.
Hiroe YAMAGUCHI Ryoko MATSUO Michihito MATSUO Tomoaki OHTSUKI Iwao SASASE
We evaluate the performance of indoor infrared wireless systems using on-off keying code division multiple access (OOK-CDMA) with decision-feedback equalizer (DFE) on diffuse channels. To estimate the impulse response, we use the training sequence that alternates '1' and '0. ' We show that the OOK-CDMA with DFE and the training sequence can achieve better performance than the OOK-CDMA without DFE. We also show that the OOK-CDMA with DFE and the training sequence can achieve almost the same performance as the OOK-CDMA with DFE and the known impulse response.