Author Search Result

[Author] Hirofumi SAKANE(2hit)

1-2hit
  • A Secure Content Delivery System Based on a Partially Reconfigurable FPGA

    Yohei HORI  Hiroyuki YOKOYAMA  Hirofumi SAKANE  Kenji TODA  

     
    PAPER-Contents Protection

      Vol:
    E91-D No:5
      Page(s):
    1398-1407

    We developed a content delivery system using a partially reconfigurable FPGA to securely distribute digital content on the Internet. With partial reconfigurability of a Xilinx Virtex-II Pro FPGA, the system provides an innovative single-chip solution for protecting digital content. In the system, a partial circuit must be downloaded from a server to the client terminal to play content. Content will be played only when the downloaded circuit is correctly combined (=interlocked) with the circuit built in the terminal. Since each circuit has a unique I/O configuration, the downloaded circuit interlocks with the corresponding built-in circuit designed for a particular terminal. Thus, the interface of the circuit itself provides a novel authentication mechanism. This paper describes the detailed architecture of the system and clarify the feasibility and effectiveness of the system. In addition, we discuss a fail-safe mechanism and future work necessary for the practical application of the system.

  • Bitstream Protection in Dynamic Partial Reconfiguration Systems Using Authenticated Encryption

    Yohei HORI  Toshihiro KATASHITA  Hirofumi SAKANE  Kenji TODA  Akashi SATOH  

     
    PAPER-Computer System

      Vol:
    E96-D No:11
      Page(s):
    2333-2343

    Protecting the confidentiality and integrity of a configuration bitstream is essential for the dynamic partial reconfiguration (DPR) of field-programmable gate arrays (FPGAs). This is because erroneous or falsified bitstreams can cause fatal damage to FPGAs. In this paper, we present a high-speed and area-efficient bitstream protection scheme for DPR systems using the Advanced Encryption Standard with Galois/Counter Mode (AES-GCM), which is an authenticated encryption algorithm. Unlike many previous studies, our bitstream protection scheme also provides a mechanism for error recovery and tamper resistance against configuration block deletion, insertion, and disorder. The implementation and evaluation results show that our DPR scheme achieves a higher performance, in terms of speed and area, than previous methods.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.