1-2hit |
Hiroyuki FUJII Hiroshi KANNO Takeshi SANO Yoshitaka NISHIO Yuji HAMADA Hisakazu TAKAHASHI Tatsuro USUKI Kenichi SHIBATA
In order to improve the running durability of organic electroluminescent devices (OELDs), the doping sites of molecular OELDs were optimized, and the frequency responses of the optimized devices were examined for Mg-In/bis (10-hydroxybenzo[h]quinolinate) beryllium (BeBq2)/N, N'-diphenyl-N, N'-(3-methylphenyl)-1, 1'-biphenyl-4, 4'-diamine (TPD)/4, 4', 4"-tris (3-methylphenylphenylamino) triphenylamine (MTDATA)/ITO. The TPD hole transport layer was the optimum doping site for 5, 6, 11, 12-tetraphenylnaphthacene (rubrene) dopant, and a very high efficiency of 13 cd/A at 0. 13 kcd/m2 was obtained for yellow emission. Half-decay times under a constant direct current density of 1. 0 mA/cm2 from an initial luminance of 0. 13 kcd/m2 extended to longer than 26,000 hours. The luminance of the optimized device decreases lineally with respect to the logarithm of the frequency as the frequency increases in the range from 1 kHz to 0. 3 MHz when a square wave with a duty ratio of 50% and a maximum voltage of 5.0 V is applied. A new driving method involving frequency modulation is proposed. This may offer accurate control of pixel luminance, and enable simple driving circuits adapted to highly integrated digital LSI chips, or the concept of system on glass.
Hiroshi KANNO Toshihiro TERAOKA Toshio ISHIZAKI Koichi OGAWA
A new half-power beam width (HPBW) base station (BS) antenna is described for use in 26 GHz- and 38 GHz-band point-to-multipoint (P-MP) fixed wireless access (FWA) systems which is narrower than the conventional design, and which efficiently meets the prescribed carrier-to-thermal noise power ratio (C/N) quality requirements. This development results in a reduction in antenna volume and the installation costs of the system. The validity of the new design in terms of C/N, carrier-to-interference signal power ratio (C/I) performance and the visibility of the propagation path are estimated.