Author Search Result

[Author] Hisashi KASHIMA(6hit)

1-6hit
  • Link Prediction Across Time via Cross-Temporal Locality Preserving Projections

    Satoshi OYAMA  Kohei HAYASHI  Hisashi KASHIMA  

     
    PAPER-Pattern Recognition

      Vol:
    E95-D No:11
      Page(s):
    2664-2673

    Link prediction is the task of inferring the existence or absence of certain relationships among data objects such as identity, interaction, and collaboration. Link prediction is found in various applications in the fields of information integration, recommender systems, bioinformatics, and social network analysis. The increasing interest in dynamically changing networks has led to growing interest in a more general link prediction problem called temporal link prediction in the data mining and machine learning communities. However, only links among nodes at the same time point are considered in temporal link prediction. We propose a new link prediction problem called cross-temporal link prediction in which the links among nodes at different time points are inferred. A typical example of cross-temporal link prediction is cross-temporal entity resolution to determine the identity of real entities represented by data objects observed in different time periods. In dynamic environments, the features of data change over time, making it difficult to identify cross-temporal links by directly comparing observed data. Other examples of cross-temporal links are asynchronous communications in social networks such as Facebook and Twitter, where a message is posted in reply to a previous message. We adopt a dimension reduction approach to cross-temporal link prediction; that is, data objects in different time frames are mapped into a common low-dimensional latent feature space, and the links are identified on the basis of the distance between the data objects. The proposed method uses different low-dimensional feature projections in different time frames, enabling it to adapt to changes in the latent features over time. Using multi-task learning, it jointly learns a set of feature projection matrices from the training data, given the assumption of temporal smoothness of the projections. The optimal solutions are obtained by solving a single generalized eigenvalue problem. Experiments using a real-world set of bibliographic data for cross-temporal entity resolution and a real-world set of emails for unobserved asynchronous communication inference showed that introducing time-dependent feature projections improved the accuracy of link prediction.

  • Recent Advances and Trends in Large-Scale Kernel Methods

    Hisashi KASHIMA  Tsuyoshi IDE  Tsuyoshi KATO  Masashi SUGIYAMA  

     
    INVITED PAPER

      Vol:
    E92-D No:7
      Page(s):
    1338-1353

    Kernel methods such as the support vector machine are one of the most successful algorithms in modern machine learning. Their advantage is that linear algorithms are extended to non-linear scenarios in a straightforward way by the use of the kernel trick. However, naive use of kernel methods is computationally expensive since the computational complexity typically scales cubically with respect to the number of training samples. In this article, we review recent advances in the kernel methods, with emphasis on scalability for massive problems.

  • Cartesian Kernel: An Efficient Alternative to the Pairwise Kernel

    Hisashi KASHIMA  Satoshi OYAMA  Yoshihiro YAMANISHI  Koji TSUDA  

     
    PAPER

      Vol:
    E93-D No:10
      Page(s):
    2672-2679

    Pairwise classification has many applications including network prediction, entity resolution, and collaborative filtering. The pairwise kernel has been proposed for those purposes by several research groups independently, and has been used successfully in several fields. In this paper, we propose an efficient alternative which we call a Cartesian kernel. While the existing pairwise kernel (which we refer to as the Kronecker kernel) can be interpreted as the weighted adjacency matrix of the Kronecker product graph of two graphs, the Cartesian kernel can be interpreted as that of the Cartesian graph, which is more sparse than the Kronecker product graph. We discuss the generalization bounds of the two pairwise kernels by using eigenvalue analysis of the kernel matrices. Also, we consider the N-wise extensions of the two pairwise kernels. Experimental results show the Cartesian kernel is much faster than the Kronecker kernel, and at the same time, competitive with the Kronecker kernel in predictive performance.

  • Least Absolute Policy Iteration--A Robust Approach to Value Function Approximation

    Masashi SUGIYAMA  Hirotaka HACHIYA  Hisashi KASHIMA  Tetsuro MORIMURA  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:9
      Page(s):
    2555-2565

    Least-squares policy iteration is a useful reinforcement learning method in robotics due to its computational efficiency. However, it tends to be sensitive to outliers in observed rewards. In this paper, we propose an alternative method that employs the absolute loss for enhancing robustness and reliability. The proposed method is formulated as a linear programming problem which can be solved efficiently by standard optimization software, so the computational advantage is not sacrificed for gaining robustness and reliability. We demonstrate the usefulness of the proposed approach through a simulated robot-control task.

  • Risk-Sensitive Learning via Minimization of Empirical Conditional Value-at-Risk

    Hisashi KASHIMA  

     
    PAPER-Artificial Intelligence and Cognitive Science

      Vol:
    E90-D No:12
      Page(s):
    2043-2052

    We extend the framework of cost-sensitive classification to mitigate risks of huge costs occurring with low probabilities, and propose an algorithm that achieves this goal. Instead of minimizing the expected cost commonly used in cost-sensitive learning, our algorithm minimizes conditional value-at-risk, also known as expected shortfall, which is considered a good risk metric in the area of financial engineering. The proposed algorithm is a general meta-learning algorithm that can exploit existing example-dependent cost-sensitive learning algorithms, and is capable of dealing with not only alternative actions in ordinary classification tasks, but also allocative actions in resource-allocation type tasks. Experiments on tasks with example-dependent costs show promising results.

  • Fast Iterative Mining Using Sparsity-Inducing Loss Functions

    Hiroto SAIGO  Hisashi KASHIMA  Koji TSUDA  

     
    PAPER-Pattern Recognition

      Vol:
    E96-D No:8
      Page(s):
    1766-1773

    Apriori-based mining algorithms enumerate frequent patterns efficiently, but the resulting large number of patterns makes it difficult to directly apply subsequent learning tasks. Recently, efficient iterative methods are proposed for mining discriminative patterns for classification and regression. These methods iteratively execute discriminative pattern mining algorithm and update example weights to emphasize on examples which received large errors in the previous iteration. In this paper, we study a family of loss functions that induces sparsity on example weights. Most of the resulting example weights become zeros, so we can eliminate those examples from discriminative pattern mining, leading to a significant decrease in search space and time. In computational experiments we compare and evaluate various loss functions in terms of the amount of sparsity induced and resulting speed-up obtained.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.