1-2hit |
Tetsuki TANIGUCHI Hoang Huy PHAM Nam Xuan TRAN Yoshio KARASAWA
This paper presents a mathematically simple method of maximum SINR (Signal to Interference plus Noise Ratio) design of broadband MIMO (Multiple Input Multiple Output) communication systems adopting TDL (Tapped Delay Line) structure for spatio-temporal processing in both transmitter and receiver sides. The weight vectors in both ends are determined alternately, optimizing one side by fixing the other, and this operation is repeated until the SINR converges. The performance of MIMO systems using the proposed approach is investigated through computer simulations, and it is demonstrated that, though it requires high computational cost, the TDL structure brings high ability to mitigate the influence of frequency selective fading, particularly when the duration of the delay profile is long. Moreover, experimental results show that the equable distribution of the resources (weights and delay units) to both arrays is better choice than the concentration of them to one side of the transmitter or receiver.
Tetsuki TANIGUCHI Hoang Huy PHAM Nam Xuan TRAN Yoshio KARASAWA
This paper presents a simple method to determine weights of single carrier multiple input multiple output (MIMO) broadband communication systems adopting tapped delay line (TDL) structure in receiver side for the effective communication under frequency selective fading (FSF) environment. First, assuming the perfect knowledge of the channel matrix in both arrays, an iterative design method of transmitter and receiver weights is proposed. In this approach, both weights are determined alternately to maximize signal to noise plus interference ratio (SINR) by fixing the weight of one side while optimizing the other, and this operation is repeated until SINR converges. Next, considering the case of uninformed transmitter, maximum SINR design method of MIMO system is extended for space time block coding (STBC) scheme working under FSF. Through computer simulations, it is demonstrated that the proposed schemes achieves higher SINR than conventional method with delay-less structure, particularly for the fading with long duration.