1-2hit |
Visually saliency detection provides an alternative methodology to image description in many applications such as adaptive content delivery and image retrieval. One of the main aims of visual attention in computer vision is to detect and segment the salient regions in an image. In this paper, we employ matrix decomposition to detect salient object in nature images. To efficiently eliminate high contrast noise regions in the background, we integrate global context information into saliency detection. Therefore, the most salient region can be easily selected as the one which is globally most isolated. The proposed approach intrinsically provides an alternative methodology to model attention with low implementation complexity. Experiments show that our approach achieves much better performance than that from the existing state-of-art methods.
Hong BAO Song-He FENG De XU Shuoyan LIU
Localized content-based image retrieval (LCBIR) has emerged as a hot topic more recently because in the scenario of CBIR, the user is interested in a portion of the image and the rest of the image is irrelevant. In this paper, we propose a novel region-level relevance feedback method to solve the LCBIR problem. Firstly, the visual attention model is employed to measure the regional saliency of each image in the feedback image set provided by the user. Secondly, the regions in the image set are constructed to form an affinity matrix and a novel propagation energy function is defined which takes both low-level visual features and regional significance into consideration. After the iteration, regions in the positive images with high confident scores are selected as the candidate query set to conduct the next-round retrieval task until the retrieval results are satisfactory. Experimental results conducted on the SIVAL dataset demonstrate the effectiveness of the proposed approach.