1-16hit |
Xiaohong JIANG Pin-Han HO Hong SHEN Susumu HORIGUCHI
Vertical stacking is a novel technique for creating nonblocking (crosstalk-free) optical multistage interconnection networks (MINs). In this paper, we propose a new class of optical MINs, the vertically stacked Benes (VSB) networks, for crosstalk-free realization of permutations in a single pass. An NN VSB network requires at most O(Nlog N) switching elements, which is the same as the Benes network, and much lower overall hardware cost than that of the existing optical MINs built on the combination of horizontal expansion and vertical stacking of banyan networks, to provide the same crosstalk-free permutation capability. Furthermore, the structure of VSB networks provides a more flexible way for constructing optical MINs because they give more choices in terms of the number of stages used in an optical MIN. We also present efficient algorithms to realize crosstalk-free permutations in an NN VSB network in time O(Nlog N), which matches the same bound as required by the reported schemes.
In this letter, some more concrete trellis relations between a lattice and its dual lattice are firstly given. Based on these relations, we generalize the main results of [1].
In this paper, we study trellis properties of the tensor product (product code) of two linear codes, and prove that the tensor product of the lexicographically first bases for two linear codes in minimal span form is exactly the lexicographically first basis for their product code in minimal span form, also the tensor products of characteristic generators of two linear codes are the characteristic generators of their product code.
Hong SHEN David J. EVANS Weifa LIANG Yuke WANG
This paper addresses the problem of multiple multicast in WDM networks. It presents three efficient algorithms to construct an optimal/sub-optimal multicast tree for each multicast and minimise the network congestion on wavelengths. The first two algorithm achieve an optimal network congestion for a specific class of networks whose all wavelengths are globally accessible and convertible at a unit cost. The third algorithm produces an approximation solution for the general case of WDM networks.
We propose a model for constructing a multilayered boundary in an information system to defend against intrusive anomalies by correlating a number of parametric anomaly detectors. The model formulation is based on two observations. First, anomaly detectors differ in their detection coverage or blind spots. Second, operating environments of the anomaly detectors reveal different information about system anomalies. The correlation among observation-specific anomaly detectors is first formulated as a Partially Observable Markov Decision Process, and then a policy-gradient reinforcement learning algorithm is developed for an optimal cooperation search, with the practical objectives being broader overall detection coverage and fewer false alerts. A host-based experimental scenario is developed to illustrate the principle of the model and to demonstrate its performance.
In this paper we study the problem of how to identify multiple disjoint paths that have the minimum total cost OPT and satisfy a delay bound D in a graph G. This problem has lots of applications in networking such as fault-tolerant quality of service (QoS) routing and network-flow load balancing. Recently, several approximation algorithms have been developed for this problem. Here, we propose a new approximation algorithm for it by using the Lagrangian Relaxation method. We then present a simple approximation algorithm for finding multiple link-disjoint paths that satisfy the delay constraints at a reasonable total cost. If the optimal solution under delay-bound D has a cost OPT, then our algorithm can find a solution whose delay is bounded by (1+)D and the cost is no more than (1+k)OPT. The time complexity of our algorithm is much better than the previous algorithms.
As audio and video applications have proliferated on the Internet, transcoding proxy caching has been considered as an important technique for improving network performance, especially for mobile networks. Due to several new emerging factors in the transcoding proxy, existing methods for proxy placement for web caching cannot be simply applied to solve the problem of proxy placement for transcoding proxy caching. This paper addresses the problem of proxy placement for coordinated en-route transcoding proxy caching for tree networks. We propose a model for this problem by including the new emerging factors in the transcoding proxy and present optimal solutions for this problem with/without constraints on the number of transcoding proxies using dynamic programming. Finally, we implement our algorithm and evaluate our model on various performance metrics through extensive simulation experiments. The implementation results show that our model outperforms the existing model for transcoding proxy placement for linear topology, as well as the random proxy placement model. The average improvements of our model over the other models are about 7.2 percent and 21.4 percent in terms of all the performance metrics considered.
It is well known that the trellises of lattices can be employed to decode efficiently. It was proved in [1] and [2] that if a lattice L has a finite trellis under the coordinate system , then there must exist a basis (b1,b2,,bn) of L such that Wi=span(
Trellis diagrams of lattices and the Viterbi algorithm can be used for decoding. It has been known that the numbers of states and labels at every level of any finite trellis diagrams of a lattice L and its dual L* under the same coordinate system are the same. In the paper, we present concrete expressions of the numbers of distinct paths in the trellis diagrams of L and L* under the same coordinate system, which are more concrete than Theorem 2 of [1]. We also give a relation between the numbers of edges in the trellis diagrams of L and L*. Furthermore, we provide the upper bounds on the state numbers of a trellis diagram of the lattice L1
Hong SHEN Yi PAN John SUM Susumu HORIGUCHI
This paper provides an overview on efficient algorithms for multicasting in optical networks supported by Wavelength Division Multiplexing (WDM) with limited wavelength conversion. We classify the multicast problems according to off-line and on-line in both reliable and unreliable networks. In each problem class, we present efficient algorithms for multicast and multiple multicast and show their performance. We also present efficient schemes for dynamic multicast group membership updating. We conclude the paper by showing possible extension of the presented algorithms for QoS provision.
Xiaohong JIANG Hong SHEN Md. Mamun-ur-Rashid KHANDKER Susumu HORIGUCHI
Crosstalk in optical switch is an intrinsic drawback of optical networks, and avoiding crosstalk is important for making optical network work properly. Horizontal expansion and vertical stacking are two basic techniques for creating nonblocking multistage interconnection networks (MINs). Rearrangeable (nonblocking) optical MINs are feasible since they have lower complexity than their strictly nonblocking counterparts. In this paper, we study the crosstalk-free permutations in rearrangeable optical MINs built on a combination of horizontal expansion and vertical stacking of banyan networks, and provide a scheme for realizing crosstalk-free permutations in this kind of optical MINs. The basic idea of this scheme is to first decompose a permutation into multiple partial permutations by using Euler Split technique, then route and realize each of these partial permutations crosstalk-free in one plane (stacked copy) of a MIN based on both the Euler Split technique and self-routing property of a banyan network. The tradeoff between the overall time complexity and hardware cost of this class of MINs is also explored in this paper.
Haibin KAN Xuefei LI Hong SHEN
In this letter, we discussed some properties of characteristic generators for a finite Abelian group code, proved that any two characteristic generators can not start (end) at the same position and have the same order of the starting (ending) components simultaneously, and that the number of all characteristic generators can be directly computed from the group code itself. These properties are exactly the generalization of the corresponding trellis properties of a linear code over a field.
Xiaohong JIANG Md. Mamun-ur-Rashid KHANDKER Hong SHEN Susumu HORIGUCHI
Vertical stacking is a novel technique for building switching networks, and packing multiple compatible connections together is an effective strategy to reduce network hardware cost. In this paper, we study the crosstalk-free permutation capability of an optical switching network built on the vertical stacking of optical banyan networks to which packing strategy is applied. We first look into the nonblocking condition of this optical switching network. We then study the crosstalk-free permutation in this network by decomposing a permutation evenly into multiple crosstalk-free partial permutations (CFPPs) and realizing each CFPP in a stacked plane of the network such that a crosstalk-free permutation can be performed in a single pass. We present a rigorous proof of CFPP decomposability of a permutation and also a complete algorithm for CFPP decomposition. The possibility of a tradeoff between the number of passes and the number of planes required for realizing a crosstalk-free permutation in this network is also explored in this paper.
Shangqi ZHANG Haihong SHEN Chunlei HUO
Building detection from high resolution remote sensing images is challenging due to the high intraclass variability and the difficulty in describing buildings. To address the above difficulties, a novel approach is proposed based on the combination of shape-specific feature extraction and discriminative feature classification. Shape-specific feature can capture complex shapes and structures of buildings. Discriminative feature classification is effective in reflecting similarities among buildings and differences between buildings and backgrounds. Experiments demonstrate the effectiveness of the proposed approach.
The performance of en-route web caching mainly depends on where the caches are located and how the cache contents are managed. In this paper, we address the problem of proxy placement in en-route web caching for tree networks, i.e., computing the optimal locations for placing k web proxies in a network such that some specified objectives are achieved. Based on our proposed model, we formulate this problem as an optimization problem and compute the optimal locations using a computationally efficient dynamic programming-based algorithm. We also extend our solution for tree networks to solve the same problem for autonomous systems. Finally, we implement our algorithms and evaluate our model on several performance metrics through extensive simulation experiments. We also compare the performance of our model with the best available heuristic KMPC model, as well as the random proxy placement model. The implementation results show that our model outperforms all the other models with respect to all performance metrics considered. The average improvements of our model over the KMPC model and the random proxy placement model are about 31.9 percent and 58.6 percent in terms of all the performance metrics considered.
We propose a novel blind watermarking algorithm, called XFuseMark, which can hide a small, visually meaningful, grayscale logo in a host image instead of using a random-noise-like sequence based on the multiresolution fusion principles, and extract a recognizable version of the embedded logo even without reference to the original host data at the receiving end. XFuseMark is not only secure, i.e., only authorized users holding a private key are able to conduct the logo extraction operation, but also robust against noise addition and image compression. Experiments verify the practical performance of XFuseMark.