1-3hit |
Yi WANG Qianbin CHEN Xing Zhe HOU Hong TANG Zufan ZHANG Ken LONG
Orthogonal frequency division multiplexing (OFDM) is very sensitive to the frequency errors caused by phase noise and Doppler shift. These errors will disturb the orthogonality among subcarriers and cause intercarrier interference (ICI). A simple method to combat ICI is proposed in this letter. The main idea is to map each data symbol onto a couple of subcarriers rather to a single subcarrier. Different from the conventional adjacent coupling and symmetric coupling methods, the frequency diversity can be utilized more efficiently by the proposed adaptive coupling method based on optimal subcarrier spacing. Numerical results show that our proposed method provides a robust signal-to-noise ratio (SNR) improvement over the conventional coupling methods.
Yi WANG Qianbin CHEN Ken LONG Zu Fan ZHANG Hong TANG
A simple DFT-based noise variance estimator for orthogonal frequency division multiplexing access (OFDMA) systems is proposed. The conventional DFT-based estimator differentiates the channel impulse response and noise in the time domain. However, for partial frequency response, its time domain signal will leak to all taps due to the windowing effect. The noise and channel leakage power become mixed. In order to accurately derive the noise power, we propose a novel symmetric extension method to reduce the channel leakage power. This method is based on the improved signal continuity at the boundaries introduced by symmetric extension. Numerical results show that the normalized mean square error (NMSE) of our proposed method is significantly lower than that of the conventional DFT method.
Yu TIAN Linhua MA Bo SONG Hong TANG Song ZHANG Xing HU
Much work in cooperative communication has been done from the perspective of the physical and network layers. However, the exact impact of signal error rate performance on cooperative routing discovery still remains unclear in multihop ad hoc networks. In this paper, we show the symbol error rate (SER) performance improvement obtained from cooperative commutation, and examine how to incorporate the factor of SER into the distributed routing discovery scheme called DGCR (Dynamic Geographic Cooperative Routing). For a single cooperative communication hop, we present two types of metric to specify the degree that one node is suitable for becoming the relay node. One metric is the potential of a node to relay with optimal SER performance. The other metric is the distance of a node to the straight line that passes through the last forwarding node and the destination. Based on location knowledge and contention scheme, we combine the two metrics into a composite metric to choose the relay node. The forwarding node is chosen dynamically according to the positions of the actual relay node and the destination. Simulation results show that our approach outperforms non-cooperative geographic routing significantly in terms of symbol error rate, and that DGCR's SER performance is better than traditional geographic cooperative routing with slight path length increase.