1-2hit |
Hosang LEE Jawad YOUSAF Kwangho KIM Seongjin MUN Chanseok HWANG Wansoo NAH
This paper analyzes and compares two methods to estimate electromagnetically coupled noises introduced to an antenna due to the nearby circuits at a circuit design stage. One of them is to estimate the power spectrum, and the other one is to estimate the active S11 parameter at the victim antenna, respectively, and both of them use simulated standard S-parameters for the electromagnetic coupling in the circuit. They also need the assumed or measured excitation of noise sources. To confirm the validness of the two methods, an evaluation board consisting of an antenna and noise sources were designed and fabricated in which voltage controlled oscillator (VCO) chips are placed as noise sources. The generated electromagnetic noises are transferred to an antenna via loop-shaped transmission lines, degrading the performance of the antenna. In this paper, detailed analysis procedures are described using the evaluation board, and it is shown that the two methods are equivalent to each other in terms of the induced voltages in the antenna. Finally, a procedure to estimate antenna performance degradation at the design stage is summarized.
Junesang LEE Hosang LEE Jungrae HA Minho KIM Sangwon YUN Yeongsik KIM Wansoo NAH
This paper presents a methodology with which to construct an equivalent simulation model of closed-loop BCI testing for a vehicle component. The proposed model comprehensively takes the transfer impedance of the test configuration into account. The methodology used in this paper relies on circuit modeling and EM modeling as well. The BCI test probes are modeled as the equivalent circuits, and the frequency-dependent losses characteristics in the probe's ferrite are derived using a PSO algorithm. The measurement environments involving the harness cable, load simulator, DUT, and ground plane are designed through three-dimensional EM simulation. The developed circuit model and EM model are completely integrated in a commercial EM simulation tool, EMC Studio of EMCoS Ltd. The simulated results are validated through comparison with measurements. The simulated and measurement results are consistent in the range of 1MHz up to 400MHz.