1-2hit |
Hsin-Hung OU Bin-Da LIU Soon-Jyh CHANG
This paper proposes a low-voltage high-speed sample-and-hold (S/H) structure with excellent power efficiency. Based on the switched-opamp technique, an inverse-flip-around architecture which maximizes the feedback factor is employed in the proposed S/H. A skew-insensitive double-sampling mechanism is presented to increase the throughput by a factor of two while eliminating the timing mismatch associated with double-sampling circuits. Furthermore, a dual-input dual-output opamp is proposed to incorporate double-sampling into the switched-opamp based S/H. This opamp also removes the memory effect in double-sampling circuitry and features fast turn-on time to improve the speed performance in switched-opamp circuits. Simulation results using a 0.13-µm CMOS process model demonstrates the proposed S/H circuit has a total-harmonic-distortion of -67.3 dB up to 250 MSample/s and a 0.8 VPP input range at 0.8 V supply. The power consumption is 3.5 mW and the figure-of-merit is only 7.4 fJ/step.
Hsin-Hung OU Soon-Jyh CHANG Bin-Da LIU
This paper proposes useful circuit structures for achieving a low-voltage/low-power pipelined ADC based on switched-opamp architecture. First, a novel unity-feedback-factor sample-and-hold which manipulates the features of switched-opamp technique is presented. Second, opamp-sharing is merged into switched-opamp structure with a proposed dual-output opamp configuration. A 0.8-V, 9-bit, 10-Msample/s pipelined ADC is designed to verify the proposed circuit. Simulation results using a 0.18-µm CMOS 1P6M process demonstrate the figure-of-merit of this pipelined ADC is only 0.71 pJ/step.