Author Search Result

[Author] Huy Hoang PHAM(3hit)

1-3hit
  • The Weights Determination Scheme for MIMO Beamforming in Frequency-Selective Fading Channels

    Huy Hoang PHAM  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER-Wireless Communication Technology

      Vol:
    E87-B No:8
      Page(s):
    2243-2249

    Smart or adaptive antennas promise to provide significant space-time communications against fading in wireless communication systems. In this paper, we propose multiple-input multiple-output (MIMO) beamforming for frequency-selective fading channels to maximize the Signal-to-Noise and Interference Ratio (SINR) based on an iterative update algorithm of transmit and receive weight vectors with prior knowledge of the channel state information (CSI) at both the transmitter and receiver. We derive the necessary conditions for an optimum weight vector solution and propose an iterative weight update algorithm for an optimal SINR reception. The Maximum Signal-to-Noise (MSN) method, where noise includes the additive gaussian noise and interference signals, is used as a criterion. The proposed MIMO with M N arrays allows the cancellation of M + N - 2 delayed channels. Computer simulations are presented to verify our analysis. The results show that significant improvements in performance are possible in wireless communication systems.

  • Multiuser MIMO Beamforming for Single Data Stream Transmission in Frequency-Selective Fading Channels

    Huy Hoang PHAM  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER

      Vol:
    E88-A No:3
      Page(s):
    651-659

    In this paper, we propose a multiple-input multiple-output (MIMO) beamforming scheme for a multiuser system in frequency-selective fading channels. The maximum signal-to-noise and interference ratio (MSINR) is adopted as a criterion to determine the transmit and receive weight vectors. In order to maximize the output SINR over all users, two algorithms for base station are considered: the first algorithm is based on the receive weight vector optimization and the second algorithm is based on an iterative update of both transmit and receive weight vectors. Based on the result of single user MIMO beamforming, we analyze the interference channels cancellation ability of multiuser MIMO system. The first algorithm is a simple method and the second algorithm is a performative solution. Through computer simulations, it is shown that multiuser communication system is achievable using the proposed methods in frequency-selective fading condition.

  • Spatial-Temporal Adaptive MIMO Beamforming for Frequency-Selective Fading Channels

    Huy Hoang PHAM  Tetsuki TANIGUCHI  Yoshio KARASAWA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E90-B No:3
      Page(s):
    578-585

    Nowadays, MIMO systems are playing an important role in wireless communications. In this paper, we propose a spatial-temporal adaptive MIMO beamforming scheme for single carrier transmission in frequency-selective fading channels with the assumption of perfect channel state information (CSI) at both the transmitter and receiver. The transmit and receive weight vectors for detecting the preceding signal and the receive weight vectors for detecting the delayed signals of the preceding signal are designed by an iterative update algorithm. Based on minimum mean square error (MMSE) method, the delayed versions of the preceding signal are exploited to maximize the output signal to interference and noise ratio (SINR) instead of suppressing them at the receiver. The improvement of output SINR is useful for MIMO systems to enhance the high-quality communication in broadband wireless systems.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.