Author Search Result

[Author] Ishtiaq Rasool KHAN(6hit)

1-6hit
  • A New Four-Channel Format for Encoding of HDR Images

    Fidaa ABED  Ishtiaq Rasool KHAN  Susanto RAHARDJA  

     
    LETTER-Digital Signal Processing

      Vol:
    E101-A No:2
      Page(s):
    512-515

    High dynamic range (HDR) images contain more details of the scene as compared to commonly used low dynamic range (LDR) images. The additional information in the HDR images is important for applications such as high-quality graphics rendering, sensing, scene analysis, and surveillance etc. Moreover, HDR images would provide better visualization experience on HDR displays, which might become more common in near future. Therefore, it is important to encode the entire dynamic range of the HDR images. In this paper, a new lossless, four-channel, eight bits per channel, format for encoding floating-point HDR images is proposed. The format is similar to the well-known RGBE format but constructs the E channel differently for better accuracy. Experimental results show that our technique could reduce the rounding error of the RGBE by more than 88%. In addition, there was a reduction of 44.3% in average error for all 33 images in the database used for this study.

  • Mathematical Proof of Explicit Formulas for Tap-Coefficients of Taylor Series Based FIR Digital Differentiators

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E84-A No:6
      Page(s):
    1581-1584

    Explicit formulas for the tap-coefficients of Taylor series based type III FIR digital differentiators have already been presented. However, those formulas were not derived mathematically from the Taylor series and were based on observation of different sets of the results. In this paper, we provide a mathematical proof of the formulas by deriving them mathematically from the Taylor series.

  • Digital Differentiators Based on Taylor Series

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E82-A No:12
      Page(s):
    2822-2824

    The explicit formula for the coefficients of maximally linear digital differentiators is derived by the use of Taylor series. A modification in the formula is proposed to extend the effective passband of the differentiator with the same number of coefficients.

  • Design of FIR Digital Differentiators Using Maximal Linearity Constraints

    Ishtiaq Rasool KHAN  Masahiro OKUDA  Ryoji OHBA  

     
    PAPER-Filter Design

      Vol:
    E87-A No:8
      Page(s):
    2010-2017

    Classical designs of maximally flat finite impulse response digital filters need to perform inverse discrete Fourier transformation of the frequency responses, in order to calculate the impulse response coefficients. Several attempts have been made to simplify the designs by obtaining explicit formulas for the impulse response coefficients. Such formulas have been derived for digital differentiators having maximal linearity at zero frequency, using different techniques including interpolating polynomials and the Taylor series etc. We show that these formulas can be obtained directly by application of maximal linearity constraints on the frequency response. The design problem is formulated as a system of linear equations, which can be solved to achieve maximal linearity at an arbitrary frequency. Certain special characteristics of the determinant of the coefficients matrix of these equations are explored for designs centered at zero frequency, and are used in derivation of explicit formulas for the impulse response coefficients of digital differentiators of both odd and even lengths.

  • New Efficient Designs of Discrete and Differentiating FIR Hilbert Transformers

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:12
      Page(s):
    2736-2738

    New designs of MAXFLAT discrete and differentiating Hilbert transformers are presented using their interrelationships with digital differentiators. The new designs have the explicit formulas for their tap-coefficients, which are further modified to obtain a new class of narrow transition band filters, with a performance comparable to the Chebyshev filters.

  • Efficient Design of Halfband Low/High Pass FIR Filters Using Explicit Formulas for Tap-Coefficients

    Ishtiaq Rasool KHAN  Ryoji OHBA  

     
    LETTER-Digital Signal Processing

      Vol:
    E83-A No:11
      Page(s):
    2370-2373

    New explicit formulas for tap-coefficients of halfband low/high pass MAXFLAT non-recursive filters are presented by using their relationship with already presented maximally linear type IV differentiators. These formulas are modified to give a new class of narrow transition band filters, with a performance comparable to that of optimal filters.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.