1-2hit |
Eui-Jik KIM Jeongsik IN Sungkwan YOUM Chul-Hee KANG
This paper presents the design and performance evaluation of a delay attack-resilient clock synchronization scheme (abbreviated to DARCS) for wireless sensor networks. In order to provide both synchronization accuracy and robustness, we propose a novel three-way handshake-based protocol, which completely excludes non-deterministic factors such as random backoff durations and unexpected hardware interrupts in a software manner and, in this way, the node can accurately estimate the relative clock offset and the end-to-end delay between a pair of nodes. Consequently, DARCS makes it possible to correct time synchronization errors as well as to detect delay attacks precisely. The simulation results show that DARCS achieves a higher synchronization accuracy and is more resilient to delay attacks than the other popular time synchronization schemes.
Taeshik SHON Eui-jik KIM Jeongsik IN Yongsuk PARK
In this letter, we propose an energy efficient hybrid architecture, the Hybrid MAC-based Robust Architecture (HMR), for wireless sensor networks focusing on MAC layer's scheduling and adaptive security suite as a security sub layer. A hybrid MAC layer with TDMA and CSMA scheduling is designed to prolong network life time, and the multi-channel TDMA based active/sleep scheduling is presented. We also present the security related functionalities needed to employ a flexible security suite to packets dynamically. Implementation and testbed of the proposed framework based on IEEE 802.15.4 are shown as well.