1-3hit |
Aorui GOU Jingjing LIU Xiaoxiang CHEN Xiaoyang ZENG Yibo FAN
Convolutional Neural Networks (CNNs) and Transformers have achieved remarkable performance in detection and classification tasks. Nevertheless, their feature extraction cannot consider both local and global information, so the detection and classification performance can be further improved. In addition, more and more deep learning networks are designed as more and more complex, and the amount of computation and storage space required is also significantly increased. This paper proposes a combination of CNN and transformer, and designs a local feature enhancement module and global context modeling module to enhance the cascade network. While the local feature enhancement module increases the range of feature extraction, the global context modeling is used to capture the feature maps' global information. To decrease the model complexity, a shared sublayer is designed to realize the sharing of weight parameters between the adjacent convolutional layers or cross convolutional layers, thereby reducing the number of convolutional weight parameters. Moreover, to effectively improve the detection performance of neural networks without increasing network parameters, the optimal transport assignment approach is proposed to resolve the problem of label assignment. The classification loss and regression loss are the summations of the cost between the demander and supplier. The experiment results demonstrate that the proposed Combination of CNN and Transformer with Shared Sublayer (CCTSS) performs better than the state-of-the-art methods in various datasets and applications.
Jingjing LIU Chao ZHANG Changyong PAN
In the advanced digital terrestrial/television multimedia broadcasting (DTMB-A) standard, a preamble based on distance detection (PBDD) is adopted for robust synchronization and signalling transmission. However, traditional signalling detection method will completely fail to work under severe frequency selective channels with ultra-long delay spread 0dB echoes. In this paper, a novel transmission parameter signalling detection method is proposed for the preamble in DTMB-A. Compared with the conventional signalling detection method, the proposed scheme works much better when the maximum channel delay is close to the length of the guard interval (GI). Both theoretical analyses and simulation results demonstrate that the proposed algorithm significantly improves the accuracy and robustness of detecting the transmitted signalling.
Jingjing LIU Chuanyang LIU Yiquan WU Zuo SUN
As one of electrical components in transmission lines, vibration damper plays a role in preventing the power lines dancing, and its recognition is an important task for intelligent inspection. However, due to the complex background interference in aerial images, current deep learning algorithms for vibration damper detection often lack accuracy and robustness. To achieve vibration damper detection more accurately, in this study, improved You Only Look Once (YOLO) model is proposed for performing damper detection. Firstly, a damper dataset containing 1900 samples with different scenarios was created. Secondly, the backbone network of YOLOv4 was improved by combining the Res2Net module and Dense blocks, reducing computational consumption and improving training speed. Then, an improved path aggregation network (PANet) structure was introduced in YOLOv4, combined with top-down and bottom-up feature fusion strategies to achieve feature enhancement. Finally, the proposed YOLO model and comparative model were trained and tested on the damper dataset. The experimental results and analysis indicate that the proposed model is more effective and robust than the comparative models. More importantly, the average precision (AP) of this model can reach 98.8%, which is 6.2% higher than that of original YOLOv4 model; and the prediction speed of this model is 62 frames per second (FPS), which is 5 FPS faster than that of YOLOv4 model.