Author Search Result

[Author] John Yanhao CHEN(2hit)

1-2hit
  • The Tracking of the Optimal Operating Frequency in a Class E Backlight Inverter Using the PLL Technique

    Chang Hua LIN  John Yanhao CHEN  

     
    PAPER-PLL

      Vol:
    E88-C No:6
      Page(s):
    1253-1262

    A new approach is proposed in this paper for the tracking of the optimal operating frequency in a Class E backlight inverter using the phase-locked loop (PLL) technique. First, a new single-stage backlight module is introduced to simplify the circuit and to raise the system efficiency. A piezoelectric transformer (PT) is used to drive the cold cathode fluorescent lamp (CCFL) to eliminate the downside of a conventional transformer and to reduce the dimension of the backlight module. Next, a PLL is embedded in the backlight system, as a feedback mechanism, to track the optimal operating frequency of the PT so that the PT's temperature effect is removed and, hence, the system efficiency and stability is improved. The feedback variable proposed is a phase angle rather than a lamp current amplitude traditionally used. A simplified model, along with its design procedure, is next presented. The complete analysis and design considerations are detailed. Finally, it is rather encouraging to observe that the experimental results match our analytical solutions closely.

  • An LCD Backlight-Module Driver Using a New Multi-Lamp Current Sharing Technique

    Chang-Hua LIN  John Yanhao CHEN  Fuhliang WEN  

     
    PAPER

      Vol:
    E88-C No:11
      Page(s):
    2111-2117

    This paper proposes a backlight module which drives multiple cold-cathode fluorescent lamps (CCFLs) with a current mirror technique to equalize the driving current for each lamp. We first adopt a half-bridge parallel-resonant inverter as the main circuit and use a single-input, multiple-output transformer to drive the multi-CCFLs. Next, we introduce current-mirror circuits to create a new current-sharing circuit, in which its current reference node and the parallel-connected multi-load nodes are used to accurately equalize all CCFLs' driving current. This will balance each lamp's brightness and, consequently, improve the picture display quality of the related liquid crystal display (LCD). This paper details the design concept for each component value with the assistance of an actual design example. The results of the example are examined with its actual measurements, which consequently verify the correctness of the proposed control strategy.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.