Author Search Result

[Author] Jong Hwa KWON(5hit)

1-5hit
  • Partial Placement of EBG on Both Power and Ground Planes for Broadband Suppression of Simultaneous Switching Noise

    Jong Hwa KWON  Jong Gwan YOOK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:7
      Page(s):
    2550-2553

    In this paper, a novel method of partially placing electromagnetic band-gap (EBG) unit cells on both the power and ground planes in multi-layer PCBs and packages is proposed; it can not only sufficiently eliminate simultaneous switching noise (SSN), but also prevent severe degradation of signal quality in high-speed systems with imperfect reference planes resulting from the perforated structures of uni-planar EBG unit cells. On the assumption that the noise sources and noise-sensitive devices exist only in specific areas, the proposed method partially arranges the EBG unit cells on both the power and ground planes, but only around the critical areas. The SSN suppression performance of the proposed structure is verified by a simulation and measurements.

  • Design of Measurement Apparatus for Electromagnetic Shielding Effectiveness Using Flanged Double Ridged Waveguide

    Jong Hwa KWON  Jae Ick CHOI  Jong Gwan YOOK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E91-B No:12
      Page(s):
    4071-4074

    In this paper, we design and manufacture a flanged double ridged waveguide with a tapered section as a sample holder for measuring the electromagnetic shielding effectiveness (SE) of planar material in broadband frequency ranges up to 10 GHz. The proposed technique overcomes the limitations of the conventional ASTM D4935 test method at high frequencies. The simulation results for the designed sample holders agree well with the fabricated ones in consideration of the design specification of S11 < -20 dB within the frequency range of 1-10 GHz. To verify the proposed measurement apparatus, the measured SE data of the commercial shielding materials from 1 to 10 GHz were indirectly compared with those obtained from the ASTM D4935 from 30 MHz to 1 GHz. We observed that the SE data obtained by using both experimental techniques agree with each other.

  • SAR Reduction of PIFA with EBG Structures for Mobile Applications

    Sangil KWAK  Dong-Uk SIM  Jong Hwa KWON  Je Hoon YUN  

     
    LETTER-Antennas and Propagation

      Vol:
    E92-B No:11
      Page(s):
    3550-3553

    This paper proposes two types of electromagnetic bandgap (EBG) structures aimed for SAR reduction on a mobile phone antenna. The EBG structures, one which uses vias while the other does not can reduce the surface wave and prevent the undesired radiation from the antenna. Thus, these structures can reduce the electromagnetic fields toward the human head direction and reduction the SAR value. Tests demonstrate the reduction of SAR values and therefore, the human body can be protected from hazard electromagnetic fields by using the proposed EBG structures, regardless of whether vias are used or not.

  • Novel Electromagnetic Bandgap with Triangular Unit Cells for Ultra-Broadband Suppression of Simultaneous Switching Noise

    Jong Hwa KWON  Dong Uk SIM  Sang Il KWAK  Jong Gwan YOOK  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E92-B No:6
      Page(s):
    2356-2358

    To build a stable power distribution network for high-speed digital systems, simultaneous switching noise (SSN) should be sufficiently suppressed in multi-layer PCBs and packages. In this paper, a novel hybrid uni-planar compact electromagnetic bandgap (UC-EBG) with two triangular-type unit cells designed on power/ground planes is proposed for the ultra-broadband suppression of SSN. The SSN suppression performance of the proposed structure is validated both numerically and experimentally. A -35 dB suppression bandwidth for SSN is achieved, starting at 800 MHz and extending to 15 GHz and beyond, thereby covering almost the entire noise band.

  • Higher-Order Modes for Shielded Offset Striplines

    Hyo Joon EOM  Jin Joo KIM  Jang Soo OCK  Young Seung LEE  Jong Hwa KWON  

     
    LETTER-Electromagnetic Compatibility(EMC)

      Vol:
    E94-B No:1
      Page(s):
    330-333

    Wave propagation along shielded offset striplines is investigated. The mode-matching method is applied to obtain TE and TM mode dispersion relations in simple series form. Computations are performed to illustrate field propagation characteristics for various offset stripline geometries.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.