1-1hit |
Sang-Jin KIM Jong-Jin KIM Minsoo HAHN
Development of a hidden Markov model (HMM)-based Korean speech synthesis system and its evaluation is described. Statistical HMM models for Korean speech units are trained with the hand-labeled speech database including the contextual information about phoneme, morpheme, word phrase, utterance, and break strength. The developed system produced speech with a fairly good prosody. The synthesized speech is evaluated and compared with that of our corpus-based unit concatenating Korean text-to-speech system. The two systems were trained with the same manually labeled speech database.