1-2hit |
Jungang GUAN Fengwei AN Xiangyu ZHANG Lei CHEN Hans Jürgen MATTAUSCH
Efficient road-lane detection is expected to be achievable by application of the Hough transform (HT) which realizes high-accuracy straight-line extraction from images. The main challenge for HT-hardware implementation in actual applications is the trade-off optimization between accuracy maximization, power-dissipation reduction and real-time requirements. We report a HT-hardware architecture for road-lane detection with parallelized voting procedure, local maximum algorithm and FPGA-prototype implementation. Parallelization of the global design is realized on the basis of θ-value discretization in the Hough space. Four major hardware modules are developed for edge detection in the original video frames, computation of the characteristic edge-pixel values (ρ,θ) in Hough-space, voting procedure for each (ρ,θ) pair with parallel local-maximum-based peak voting-point extraction in Hough space to determine the detected straight lines. Implementation of a prototype system for real-time road-lane detection on a low-cost DE1 platform with a Cyclone II FPGA device was verified to be possible. An average detection speed of 135 frames/s for VGA (640x480)-frames was achieved at 50 MHz working frequency.
Hiroyuki OKAMURA Jungang GUAN Chao LUO Tadashi DOHI
This paper considers how to evaluate the resiliency for virtualized system with software rejuvenation. The software rejuvenation is a proactive technique to prevent the failure caused by aging phenomenon such as resource exhaustion. In particular, according to Gohsh et al. (2010), we compute a quantitative criterion to evaluate resiliency of system by using continuous-time Markov chains (CTMC). In addition, in order to convert general state-based models to CTMCs, we employ PH (phase-type) expansion technique. In numerical examples, we investigate the resiliency of virtualized system with software rejuvenation under two different rejuvenation policies.