1-2hit |
Junil AHN Jaewon CHANG Chiho LEE
The integer least-squares (ILS) problem frequently arises in wireless communication systems. Sphere decoding (SD) is a systematic search scheme for solving ILS problem. The enumeration of candidates is a key part of SD for selecting a lattice point, which will be searched by the algorithm. Herein, the authors present a computationally efficient Schnorr-Euchner enumeration (SEE) algorithm to solve the constrained ILS problems, where the solution is limited into the finite integer lattice. To trace only valid lattice points within the underlying finite lattice, the authors devise an adaptive computation of the enumeration step and counting the valid points enumerated. In contrast to previous SEE methods based on a zig-zag manner, the proposed method completely avoids enumerating invalid points outside the finite lattice, and it further reduces real arithmetic and logical operations.
Adaptive interference suppression strategies based on the transform domain approach are proposed for a satellite on-board filter bank under tone-type interferences. In the proposed methods, the three kinds of algorithms to compute the threshold level are jointly employed with the notch filter or the clipper. Simulation results show that the proposed schemes significantly improve performance under interfering environments, compared to the no suppression case.