1-5hit |
This paper presents a view independent video-based face recognition method using posterior probability in Kernel Fisher Discriminant (KFD) space. In practical environment, the view of faces changes dynamically. Robustness to view changes is required for video-based face recognition in practical environment. Since the view changes induce large non-linear variation, kernel-based methods are appropriate. We use KFD analysis to cope with non-linear variation. To classify image sequence, the posterior probability in KFD space is used. KFD analysis assumes that the distribution of each class in high dimensional space is Gaussian. This makes the computation of posterior probability in KFD space easy. The combination of KFD space and posterior probability of image sequence is the main contribution of the proposed method. The performance is evaluated by using two face databases. Effectiveness of the proposed method is shown by the comparison with the other feature spaces and classification methods.
This paper presents a robust object tracking method under pose variation and partial occlusion. In practical environment, the appearance of objects is changed dynamically by pose variation or partial occlusion. Therefore, the robustness to them is required for practical applications. However, it is difficult to be robust to various changes by only one tracking model. Therefore, slight robustness to variations and the easiness of model update are required. For this purpose, Kernel Principal Component Analysis (KPCA) of local parts is used. KPCA of local parts is proposed originally for the purpose of pose independent object recognition. Training of this method is performed by using local parts cropped from only one or two object images. This is good property for tracking because only one target image is given in practical applications. In addition, the model (subspace) of this method can be updated easily by solving a eigen value problem. Performance of the proposed method is evaluated by using the test face sequence captured under pose, partial occlusion, scaling and illumination variations. Effectiveness and robustness of the proposed method are demonstrated by the comparison with template matching based tracker. In addition, adaptive update rule using similarity with current subspace is also proposed. Effectiveness of adaptive update rule is shown by experiment.
Kazuhiro HOTTA Taketoshi MISHIMA Takio KURITA
This paper presents a scale invariant face detection and classification method which uses shift invariant features extracted from a Log-Polar image. Scale changes of a face in an image are represented as shift along the horizontal axis in the Log-Polar image. In order to obtain scale invariant features, shift invariant features are extracted from each row of the Log-Polar image. Autocorrelations, Fourier spectrum, and PARCOR coefficients are used as shift invariant features. These features are then combined with simple classification methods based on Linear Discriminant Analysis to realize scale invariant face detection and classification. The effectiveness of the proposed face detection method is confirmed by experiments using face images captured under different scales, backgrounds, illuminations, and dates. To evaluate the proposed face classification method, we performed experiments using 2,800 face images with 7 scales under 2 different backgrounds and face images of 52 persons.
Kazuhiro HOTTA Masaru TANAKA Takio KURITA Taketoshi MISHIMA
This paper presents Dynamic Attention Map by Ising model for face detection. In general, a face detector can not know where faces there are and how many faces there are in advance. Therefore, the face detector must search the whole regions on the image and requires much computational time. To speed up the search, the information obtained at previous search points should be used effectively. In order to use the likelihood of face obtained at previous search points effectively, Ising model is adopted to face detection. Ising model has the two-state spins; "up" and "down". The state of a spin is updated by depending on the neighboring spins and an external magnetic field. Ising spins are assigned to "face" and "non-face" states of face detection. In addition, the measured likelihood of face is integrated into the energy function of Ising model as the external magnetic field. It is confirmed that face candidates would be reduced effectively by spin flip dynamics. To improve the search performance further, the single level Ising search method is extended to the multilevel Ising search. The interactions between two layers which are characterized by the renormalization group method is used to reduce the face candidates. The effectiveness of the multilevel Ising search method is also confirmed by the comparison with the single level Ising search method.
This paper proposes an automatic error correction method for melanosome tracking. Melanosomes in intracellular images are currently tracked manually when investigating diseases, and an automatic tracking method is desirable. We detect all melanosome candidates by SIFT with 2 different parameters. Of course, the SIFT also detects non-melanosomes. Therefore, we use the 4-valued difference image (4-VDimage) to eliminate non-melanosome candidates. After tracking melanosome, we re-track the melanosome with low confidence again from t+1 to t. If the results from t to t+1 and from t+1 to t are different, we judge that initial tracking result is a failure, the melanosome is eliminated as a candidate and re-tracking is carried out. Experiments demonstrate that our method can correct the error and improves the accuracy.