1-4hit |
Hybrid storage techniques are useful methods to improve the cost performance for input-output (IO) intensive workloads. These techniques choose areas of concentrated IO accesses and migrate them to an upper tier to extract as much performance as possible through greater use of upper tier areas. Automated tiered storage with fast memory and slow flash storage (ATSMF) is a hybrid storage system situated between non-volatile memories (NVMs) and solid-state drives (SSDs). ATSMF aims to reduce the average response time for IO accesses by migrating areas of concentrated IO access from an SSD to an NVM. When a concentrated IO access finishes, the system migrates these areas from the NVM back to the SSD. Unfortunately, the published ATSMF implementation temporarily consumes much NVM capacity upon migrating concentrated IO access areas to NVM, because its algorithm executes NVM migration with high priority. As a result, it often delays evicting areas in which IO concentrations have ended to the SSD. Therefore, to reduce the consumption of NVM while maintaining the average response time, we developed new techniques for making ATSMF more practical. The first is a queue handling technique based on the number of IO accesses for NVM migration and eviction. The second is an eviction method that selects only write-accessed partial regions in finished areas. The third is a technique for variable eviction timing to balance the NVM consumption and average response time. Experimental results indicate that the average response times of the proposed ATSMF are almost the same as those of the published ATSMF, while the NVM consumption is three times lower in best case.
Satoshi IMAMURA Eiji YOSHIDA Kazuichi OE
Emerging solid state drives (SSDs) based on a next-generation memory technology have been recently released in market. In this work, we call them low-latency SSDs because the device latency of them is an order of magnitude lower than that of conventional NAND flash SSDs. Although low-latency SSDs can drastically reduce an I/O latency perceived by an application, the overhead of OS processing included in the I/O latency has become noticeable because of the very low device latency. Since the OS processing is executed on a CPU core, its operating frequency should be maximized for reducing the OS overhead. However, a higher core frequency causes the higher CPU power consumption during I/O accesses to low-latency SSDs. Therefore, we propose the device utilization-aware DVFS (DU-DVFS) technique that periodically monitors the utilization of a target block device and applies dynamic voltage and frequency scaling (DVFS) to CPU cores executing I/O-intensive processes only when the block device is fully utilized. In this case, DU-DVFS can reduce the CPU power consumption without hurting performance because the delay of OS processing incurred by decreasing the core frequency can be hidden. Our evaluation with 28 I/O-intensive workloads on a real server containing an Intel® Optane™ SSD demonstrates that DU-DVFS reduces the CPU power consumption by 41.4% on average (up to 53.8%) with a negligible performance degradation, compared to a standard DVFS governor on Linux. Moreover, the evaluation with multiprogrammed workloads composed of I/O-intensive and non-I/O-intensive programs shows that DU-DVFS is also effective for them because it can apply DVFS only to CPU cores executing I/O-intensive processes.
Kazuichi OE Mitsuru SATO Takeshi NANRI
The response times of solid state drives (SSDs) have decreased dramatically due to the growing use of non-volatile memory express (NVMe) devices. Such devices have response times of less than 100 micro seconds on average. The response times of all-flash-array systems have also decreased dramatically through the use of NVMe SSDs. However, there are applications, particularly virtual desktop infrastructure and in-memory database systems, that require storage systems with even shorter response times. Their workloads tend to contain many input-output (IO) concentrations, which are aggregations of IO accesses. They target narrow regions of the storage volume and can continue for up to an hour. These narrow regions occupy a few percent of the logical unit number capacity, are the target of most IO accesses, and appear at unpredictable logical block addresses. To drastically reduce the response times for such workloads, we developed an automated tiered storage system called “automated tiered storage with fast memory and slow flash storage” (ATSMF) in which the data in targeted regions are migrated between storage devices depending on the predicted remaining duration of the concentration. The assumed environment is a server with non-volatile memory and directly attached SSDs, with the user applications executed on the server as this reduces the average response time. Our system predicts the effect of migration by using the previously monitored values of the increase in response time during migration and the change in response time after migration. These values are consistent for each type of workload if the system is built using both non-volatile memory and SSDs. In particular, the system predicts the remaining duration of an IO concentration, calculates the expected response-time increase during migration and the expected response-time decrease after migration, and migrates the data in the targeted regions if the sum of response-time decrease after migration exceeds the sum of response-time increase during migration. Experimental results indicate that ATSMF is at least 20% faster than flash storage only and that its memory access ratio is more than 50%.
Kazuichi OE Takeshi NANRI Koji OKAMURA
In previous studies, we determined that workloads often contain many input-output (IO) concentrations. Such concentrations are aggregations of IO accesses. They appear in narrow regions of a storage volume and continue for durations of up to about an hour. These narrow regions occupy a small percentage of the logical unit number capacity, include most IO accesses, and appear at unpredictable logical block addresses. We investigated these workloads by focusing on page-level regularity and found that they often include few regularities. This means that simple caching may not reduce the response time for these workloads sufficiently because the cache migration algorithm uses page-level regularity. We previously developed an on-the-fly automated storage tiering (OTF-AST) system consisting of an SSD and an HDD. The migration algorithm identifies IO concentrations with moderately long durations and migrates them from the HDD to the SSD. This means that there is little or no reduction in the response time when the workload includes few such concentrations. We have now developed a hybrid storage system consisting of a cache drive with an SSD and HDD and a multi-tier SSD that uses OTF-AST, called “OTF-AST with caching.” The OTF-AST scheme handles the IO accesses that produce moderately long duration IO concentrations while the caching scheme handles the remaining IO accesses. Experiments showed that the average response time for our system was 45% that of Facebook FlashCache on a Microsoft Research Cambridge workload.