Author Search Result

[Author] Kazuya HARAGUCHI(3hit)

1-3hit
  • A Randomness Based Analysis on the Data Size Needed for Removing Deceptive Patterns

    Kazuya HARAGUCHI  Mutsunori YAGIURA  Endre BOROS  Toshihide IBARAKI  

     
    PAPER-Algorithm Theory

      Vol:
    E91-D No:3
      Page(s):
    781-788

    We consider a data set in which each example is an n-dimensional Boolean vector labeled as true or false. A pattern is a co-occurrence of a particular value combination of a given subset of the variables. If a pattern appears frequently in the true examples and infrequently in the false examples, we consider it a good pattern. In this paper, we discuss the problem of determining the data size needed for removing "deceptive" good patterns; in a data set of a small size, many good patterns may appear superficially, simply by chance, independently of the underlying structure. Our hypothesis is that, in order to remove such deceptive good patterns, the data set should contain a greater number of examples than that at which a random data set contains few good patterns. We justify this hypothesis by computational studies. We also derive a theoretical upper bound on the needed data size in view of our hypothesis.

  • BLOCKSUM is NP-Complete

    Kazuya HARAGUCHI  Hirotaka ONO  

     
    PAPER

      Vol:
    E96-D No:3
      Page(s):
    481-488

    BLOCKSUM, also known as KEISANBLOCK in Japanese, is a Latin square filling type puzzle, such as Sudoku. In this paper, we prove that the decision problem whether a given instance of BLOCKSUM has a solution or not is NP-complete.

  • Construction of Classifiers by Iterative Compositions of Features with Partial Knowledge

    Kazuya HARAGUCHI  Toshihide IBARAKI  

     
    PAPER

      Vol:
    E89-A No:5
      Page(s):
    1284-1291

    We consider the classification problem to construct a classifier c:{0,1}n{0,1} from a given set of examples (training set), which (approximately) realizes the hidden oracle y:{0,1}n{0,1} describing the phenomenon under consideration. For this problem, a number of approaches are already known in computational learning theory; e.g., decision trees, support vector machines (SVM), and iteratively composed features (ICF). The last one, ICF, was proposed in our previous work (Haraguchi et al., (2004)). A feature, composed of a nonempty subset S of other features (including the original data attributes), is a Boolean function fS:{0,1}S{0,1} and is constructed according to the proposed rule. The ICF algorithm iterates generation and selection processes of features, and finally adopts one of the generated features as the classifier, where the generation process may be considered as embodying the idea of boosting, since new features are generated from the available features. In this paper, we generalize a feature to an extended Boolean function fS:{0,1,*}S{0,1,*} to allow partial knowledge, where * denotes the state of uncertainty. We then propose the algorithm ICF* to generate such generalized features. The selection process of ICF* is also different from that of ICF, in that features are selected so as to cover the entire training set. Our computational experiments indicate that ICF* is better than ICF in terms of both classification performance and computation time. Also, it is competitive with other representative learning algorithms such as decision trees and SVM.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.