Author Search Result

[Author] Kazuyoshi SUZUKI(3hit)

1-3hit
  • A General Class of M-Spotty Byte Error Control Codes

    Kazuyoshi SUZUKI  Toshihiko KASHIYAMA  Eiji FUJIWARA  

     
    PAPER-Coding Theory

      Vol:
    E90-A No:7
      Page(s):
    1418-1427

    Error control codes have extensively been applied to semiconductor memories using high density RAM chips with wide I/O data, e.g., with 8-bit or 16-bit I/O data. Recently, spotty byte errors called s-spotty byte errors are newly defined as t or fewer bits errors in a byte having length b bits, where 1 ≤ t ≤ b. This paper proposes another type of spotty byte errors, i.e., m-spotty byte errors, where more than t bits errors in a byte may occur due to hit by high energetic particles. For these errors, this paper presents generalized m-spotty byte error control codes with minimum m-spotty distance d.

  • Complex M-Spotty Byte Error Control Codes

    Kazuyoshi SUZUKI  Toshihiko KASHIYAMA  Eiji FUJIWARA  

     
    PAPER-Coding Theory

      Vol:
    E89-A No:9
      Page(s):
    2396-2404

    Spotty byte error control codes are very effective for correcting/detecting errors in semiconductor memory systems using recent high-density RAM chips with wide I/O data, e.g., 8, 16, or 32 bits. A spotty byte error is defined as t-bit errors within a byte of length b-bit, where 1 ≤ t ≤ b, and denoted as t/b-error. This paper proposes a new error model of two spotty byte errors occurring simultaneously, i.e., t/b-error and t′/b-error, where t t′, called complex spotty byte errors. This paper presents two complex m-spotty byte error control codes, i.e., St/bEC-(St/b+St′/b)ED codes which correct all single t/b-errors and detect both t/b-errors and t′/b-errors simultaneously, and (St/b+St′/b)EC codes which correct both single t/b-errors and single t′/b-errors simultaneously. This paper also presents practical examples of the codes with parameter t′=1, that is, St/bEC-(St/b+S)ED codes and (St/b+S) EC codes which require smaller check-bit length than the existing Single t/b-error Correcting and Double t/b-error Detecting (St/bEC-Dt/bED) codes and the Double t/b-error Correcting (Dt/bEC) codes, respectively.

  • MacWilliams Identity for M-Spotty Weight Enumerator

    Kazuyoshi SUZUKI  Eiji FUJIWARA  

     
    PAPER-Coding Theory

      Vol:
    E93-A No:2
      Page(s):
    526-531

    M-spotty byte error control codes are very effective for correcting/detecting errors in semiconductor memory systems that employ recent high-density RAM chips with wide I/O data (e.g., 8, 16, or 32 bits). In this case, the width of the I/O data is one byte. A spotty byte error is defined as random t-bit errors within a byte of length b bits, where 1 ≤ t ≤ b. Then, an error is called an m-spotty byte error if at least one spotty byte error is present in a byte. M-spotty byte error control codes are characterized by the m-spotty distance, which includes the Hamming distance as a special case for t = 1 or t = b. The MacWilliams identity provides the relationship between the weight distribution of a code and that of its dual code. The present paper presents the MacWilliams identity for the m-spotty weight enumerator of m-spotty byte error control codes. In addition, the present paper clarifies that the indicated identity includes the MacWilliams identity for the Hamming weight enumerator as a special case.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.