1-6hit |
Kazunori KOBAYASHI Ken'ichi FURUYA Yoichi HANEDA Akitoshi KATAOKA
We previously proposed a method of sound source and microphone localization. The method estimates the locations of sound sources and microphones from only time differences of arrival between signals picked up by microphones even if all their locations are unknown. However, there is a problem that some estimation results converge to local minimum solutions because this method estimates locations iteratively and the error function has multiple minima. In this paper, we present a new iterative method to solve the local minimum problem. This method achieves accurate estimation by selecting effective initial locations from many random initial locations. The computer simulation and experimental results demonstrate that the presented method eliminates most local minimum solutions. Furthermore, the computational complexity of the presented method is similar to that of the previous method.
Kenta NIWA Yusuke HIOKA Sumitaka SAKAUCHI Ken'ichi FURUYA Yoichi HANEDA
A method to estimate sound source orientation in a reverberant room using a microphone array is proposed. We extend the conventional modeling of a room transfer function based on the image method in order to take into account the directivity of a sound source. With this extension, a transfer function between a sound source and a listener (or a microphone) is described by the superposition of transfer functions from each image source to the listener multiplied by the source directivity; thus, the sound source orientation can be estimated by analyzing how the image sources are distributed (power distribution of image sources) from observed signals. We applied eigenvalue analysis to the spatial correlation matrix of the microphone array observation to obtain the power distribution of image sources. Bsed on the assumption that the spatial correlation matrix for each set of source position and orientation is known a priori, the variation of the eigenspace can be modeled. By comparing the eigenspace of observed signals and that of pre-learned models, we estimated the sound source orientation. Through experiments using seven microphones, the sound source orientation was estimated with high accuracy by increasing the reverberation time of a room.
Yusuke HIOKA Ken'ichi FURUYA Yoichi HANEDA Akitoshi KATAOKA
An improvement of estimating sound power spectra located in a particular 2-dimensional area is proposed. We previously proposed a conventional method that estimates sound power spectra using multiple fixed beamformings in order to emphasize speech located in a particular 2-dimensional area. However, the method has one drawback that the number of areas where the active sound sources are located must be restricted. This restriction makes the method less effective when many noise source located in different areas are simultaneously active. In this paper, we reveal the cause of this restriction and determine the maximum number of areas for which the method is able to simultaneously estimate sound power spectra. Then we also introduce a procedure for investigating areas that include active sound sources to reduce the number of unknown power spectra to be estimated. The effectiveness of the proposed method is examined by experimental evaluation applied to sounds recorded in a practical environment.
Yusuke HIOKA Kazunori KOBAYASHI Ken'ichi FURUYA Akitoshi KATAOKA
A method for extracting a sound signal from a particular area that is surrounded by multiple ambient noise sources is proposed. This method performs several fixed beamformings on a pair of small microphone arrays separated from each other to estimate the signal and noise power spectra. Noise suppression is achieved by applying spectrum emphasis to the output of fixed beamforming in the frequency domain, which is derived from the estimated power spectra. In experiments performed in a room with reverberation, this method succeeded in suppressing the ambient noise, giving an SNR improvement of more than 10 dB, which is better than the performance of the conventional fixed and adaptive beamforming methods using a large-aperture microphone array. We also confirmed that this method keeps its performance even if the noise source location changes continuously or abruptly.
Shoichi KOYAMA Ken'ichi FURUYA Hisashi UEMATSU Yusuke HIWASAKI Yoichi HANEDA
A new real-time sound field transmission system is presented. To construct this system, a large listening area needs to be reproduced at not less than a constant height. Additionally, the driving signals of the loudspeakers should be obtained only from received signals of microphones. Wave field reconstruction (WFR) filtering for linear arrays of microphones and loudspeakers is considered to be suitable for this kind of system. An experimental system was developed to show the feasibility of real-time sound field transmission using the WFR filter. Experiments to measure the reproduced sound field and a subjective listening test of sound localization were conducted to evaluate the proposed system. Although the reproduced sound field included several artifacts such as spatial aliasing and faster amplitude decay, the experimental results indicated that the proposed system was able to provide sound localization accuracy for virtual sound sources comparable to that for real sound sources in a large listening area.
A new method is proposed for recovering an unknown source signal ,which is observed through two unknown channels characterized by non-minimum phase FIR filters. Conventional methods cannot estimate the non-minimum phase parts and recover the source signal. Our method is based on computing the eigenvector corresponding to the smallest eigenvalue of the input correlation matrix and using the criterion with the multi-channnel inverse filtering theory. The impulse responses are estimated by computing the eigenvector for all modeling orders. The optimum order is searched for using the criterion and the most appropriate impulse responses are estimated. Multi-channel inverse filtering with the estimated impulse responses is used to recover the unknown source signal. Computer simulation shows that our method can estimate nonminimum phase impulse responses from two reverberant signals and recover the source signal.