Author Search Result

[Author] Ken-ichi SATO(51hit)

1-20hit(51hit)

  • Optical Path Accommodation Design Enabling Cross-Connect System Scale Evaluation

    Naohide NAGATSU  Ken-ichi SATO  

     
    LETTER-Optical Communication

      Vol:
    E78-B No:9
      Page(s):
    1339-1343

    This paper proposes novel optical path accommodation design algorithms for networks wherein the number of wavelengths multiplexed into a fiber is restricted. This algorithm optimizes both optical path route and wavelength assignment in VWP/WP networks. It minimizes optical path cross-connect (OPXC) system scale in terms of incoming/outgoing fiber port numbers. A comparison in terms of required OPXC system scale between the WP and VWP schemes is demonstrated for the first time.

  • Optical Node Architectures That Utilize Dedicated Add/Drop Switches to Realize Colorless, Directionless and Contentionless Capability

    Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:4
      Page(s):
    1307-1316

    This paper proposes optical node architectures for the single-layer optical cross-connect (OXC) and hierarchical OXC (HOXC) that utilize dedicated add/drop switches for originating/terminating traffic at a node. For both single-layer OXC and HOXC, three architectures with different restrictions on add/drop capabilities are presented. The performance of the proposed architectures is compared through numerical experiments. The architectures significantly reduce total switch scale and minimize necessary switch size while attaining colorless, directionless and contentionless capabilities.

  • Architecture and Design of Coarse/Fine Hybrid Granular Routing Optical Networks Open Access

    Yusaku ITO  Yojiro MORI  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/07/26
      Vol:
    E103-B No:2
      Page(s):
    118-129

    A novel coarse and fine hybrid granular routing network architecture is proposed. Virtual direct links (VDLs) defined by the coarse granular routing to bridge distant node pairs, and routing via VDL mitigate the spectrum narrowing caused by optical filtering at wavelength-selective switches in ROADM (Reconfigurable Optical Add/Drop Multiplexing) nodes. The impairment mitigation yields denser channel accommodation in the frequency domain, which substantially increases fiber spectral efficiency. The proposed network simultaneously utilizes fine granular optical path level routing so that optical paths can be effectively accommodated in VDLs. The newly developed network design algorithm presented in this paper effectively implements routing and spectrum assignment to paths in addition to optimizing VDL establishment and path accommodation to VDLs. The effectiveness of the proposed architecture is demonstrated through both numerical and experimental evaluations; the number of fibers necessary in a network, and the spectrum bandwidth and hop count product are, respectively, reduced by up to 18% and increased by up to 111%.

  • Network Design for Multi-Layered Photonic IP Networks Considering IP Traffic Growth

    Shigeru KANEDA  Tomohiko UYEMATSU  Naohide NAGATSU  Ken-ichi SATO  

     
    PAPER-Internet

      Vol:
    E87-B No:2
      Page(s):
    302-309

    In order to transport an ever-increasing amount of IP traffic effectively, Photonic IP networks that employ wavelength routing and Layer 3 cut-through are very important. This paper proposes a new network design algorithm that minimizes the network cost considering IP traffic growth for multi-layered photonic IP networks that comprise electrical label switched paths (LSPs) and optical LSPs. We evaluate the network cost obtained from the developed network design algorithm that considers IP traffic growth and compare it to the results obtained from a static zero-based algorithm. The static zero-based algorithm does not take into account the history of progressive past IP traffic changes/growth until that time. The results show that our proposed algorithm is very effective; the cost increase from the cost obtained using the zero-based algorithm is marginal. The algorithm developed herein enables effective multi-layered photonic IP network design that can be applied to practical networks where IP traffic changes/increases progressively and that can be used for long term network provisioning.

  • Compact Matrix-Switch-Based Hierarchical Optical Path Cross-Connect with Colorless Waveband Add/Drop Ratio Restriction

    Ryosuke HIRAKO  Kiyo ISHII  Hiroshi HASEGAWA  Ken-ichi SATO  Osamu MORIWAKI  

     
    PAPER

      Vol:
    E94-B No:4
      Page(s):
    918-927

    We propose a compact matrix-switch-based hierarchical optical cross-connect (HOXC) architecture that effectively handles the colorless waveband add/drop ratio restriction so as to realize switch scale reduction. In order to implement the colorless waveband add/drop function, we develop a wavelength MUX/DMUX that can be commonly used by different wavebands. We prove that the switch scale of the proposed HOXC is much smaller than that of conventional single-layer optical cross-connects (OXCs) and a typical HOXC. Furthermore, we introduce a prototype system based on the proposed architecture that utilizes integrated novel wavelength MUXs/DMUXs. Transmission experiments prove its technical feasibility.

  • Flexible OADM Architecture and Its Impact on WDM Ring Evolution for Robust and Large-Scale Optical Transport Networks

    Naohide NAGATSU  Satoru OKAMOTO  Masafumi KOGA  Ken-ichi SATO  

     
    PAPER-Communication Networks

      Vol:
    E82-B No:8
      Page(s):
    1105-1114

    This paper discusses global area optical transport ring networks using wavelength division multiplexing (WDM) technologies and proposes a novel optical add/drop multiplexer (OADM) architecture suitable for such an application field. Study on the requirements of a global area ring application elucidates the appropriate ring/protection architecture as the path switched bi-directional ring. The proposed OADM architecture has flexibility in terms of path provisioning and scalability. We conclude that the proposed OADM can effectively configure the large-scale path switched bi-directional rings.

  • Flexible OADM Architecture and Its Impact on WDM Ring Evolution for Robust and Large-Scale Optical Transport Networks

    Naohide NAGATSU  Satoru OKAMOTO  Masafumi KOGA  Ken-ichi SATO  

     
    PAPER-Communication Networks

      Vol:
    E82-C No:8
      Page(s):
    1371-1380

    This paper discusses global area optical transport ring networks using wavelength division multiplexing (WDM) technologies and proposes a novel optical add/drop multiplexer (OADM) architecture suitable for such an application field. Study on the requirements of a global area ring application elucidates the appropriate ring/protection architecture as the path switched bi-directional ring. The proposed OADM architecture has flexibility in terms of path provisioning and scalability. We conclude that the proposed OADM can effectively configure the large-scale path switched bi-directional rings.

  • ATM Network Resource Management Techniques for CBR Virtual Paths/Channels

    Youichi SATO  Naoaki YAMANAKA  Ken-ichi SATO  

     
    PAPER-Communication Networks and Services

      Vol:
    E79-B No:5
      Page(s):
    684-692

    The benefits of ATM techniques have been widely recognized and many organizations envisage the introduction of ATM techniques into their telecommunication networks. The ATM benefits can, however, be fully exploited only after effective network resource management techniques have been developed. This paper focuses on CBR-VP management techniques. The ATM transport network architecture and VP roles are summarized. Next, the issues of VP accommodation design are described. The point is how to create a design that accommodates cell loss and cell delay jitter, both of which depend on various network parameters and conditions. For this purpose, analytical procedures based on an M/D/1 queueing model are adopted. The approximation method is shown to be very effective in practical use through computer analysis. The method guarantees conservative QOSs. Finally, the proposed method is applied to several design examples to illustrate VP management issues. The proposed method will enable ATM techniques to be introduced to our telecommunication networks by the mid-1990's.

  • Transmission-Quality-Aware Online Network Design and Provisioning Enabled by Optical Performance Monitoring

    Keisuke KAYANO  Yojiro MORI  Hiroshi HASEGAWA  Ken-ichi SATO  Shoichiro ODA  Setsuo YOSHIDA  Takeshi HOSHIDA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2019/12/04
      Vol:
    E103-B No:6
      Page(s):
    670-678

    The spectral efficiency of photonic networks can be enhanced by the use of higher modulation orders and narrower channel bandwidth. Unfortunately, these solutions are precluded by the margins required to offset uncertainties in system performance. Furthermore, as recently highlighted, the disaggregation of optical transport systems increases the required margin. We propose here highly spectrally efficient networks, whose margins are minimized by transmission-quality-aware adaptive modulation-order/channel-bandwidth assignment enabled by optical performance monitoring (OPM). Their effectiveness is confirmed by experiments on 400-Gbps dual-polarization quadrature phase shift keying (DP-QPSK) and 16-ary quadrature amplitude modulation (DP-16QAM) signals with the application of recently developed Q-factor-based OPM. Four-subcarrier 32-Gbaud DP-QPSK signals within 150/162.5/175GHz and two-subcarrier 32-Gbaud DP-16QAM signals within 75/87.5/100GHz are experimentally analyzed. Numerical network simulations in conjunction with the experimental results demonstrate that the proposed scheme can drastically improve network spectral efficiency.

  • Precise UPC Scheme Suitable for ATM Networks Characterized by Widely Ranging Traffic Parameter Values

    Naoaki YAMANAKA  Youichi SATO  Ken-ichi SATO  

     
    LETTER-Communication Networks and Service

      Vol:
    E75-B No:12
      Page(s):
    1367-1372

    This letter proposes a new UPC (Usage Parameter Control) method suitable for monitoring/controlling the ATM cell streams of VCs (Virtual Channels) and VPs (Virtual Paths) specified with a wide-range of traffic parameter values. The method, named the 2-phase T-X method, combines two credit window type monitoring circuits that are shifted in phase by T/2. The proposed method achieves the best of both the DB and T-X methods. Its cell mis-policing rate is very low (equivalent to that of the DB-method) while its minimal hardware requirements are equal to those of the T-X method. The proposed method ensures more effective network resource (link) utilization. As a result, the proposed method is shown to be a credible UPC technique for handling broadband VBR (Variable Bit Rate) traffic in ATM based multimedia networks.

  • Optical Fast Circuit Switching Networks Employing Dynamic Waveband Tunnel

    Takahiro OGAWA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:10
      Page(s):
    3139-3148

    We propose a novel dynamic hierarchical optical path network architecture that achieves efficient optical fast circuit switching. In order to complete wavelength path setup/teardown efficiently, the proposed network adaptively manages waveband paths and bundles of optical paths, which provide virtual mesh connectivity between node pairs for wavelength paths. Numerical experiments show that operational and facility costs are significantly reduced by employing the adaptive virtual waveband connections.

  • Assessment of Optical Node Architectures for Building Next Generation Large Bandwidth Networks Open Access

    Mungun-Erdene GANBOLD  Takuma YASUDA  Yojiro MORI  Hiroshi HASEGAWA  Fumikazu INUZUKA  Akira HIRANO  Ken-ichi SATO  

     
    PAPER-Network

      Pubricized:
    2019/12/20
      Vol:
    E103-B No:6
      Page(s):
    679-689

    We analyze the cost of networks consisting of optical cross-connect nodes with different architectures for realizing the next generation large bandwidth networks. The node architectures include wavelength granular and fiber granular optical routing cross-connects. The network cost, capital expenditure (CapEx), involves link cost and node cost, both of which are evaluated for different scale networks under various traffic volumes. Numerical experiments demonstrate that the subsystem modular architecture with wavelength granular routing yields the highest cost effectiveness over a wide range of parameter values.

  • Impact of Elastic Optical Paths That Adopt Distance Adaptive Modulation to Create Efficient Networks

    Tatsumi TAKAGI  Hiroshi HASEGAWA  Ken-ichi SATO  Yoshiaki SONE  Akira HIRANO  Masahiko JINNO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E95-B No:12
      Page(s):
    3793-3801

    We propose optical path routing and frequency slot assignment algorithms that can make the best use of elastic optical paths and the capabilities of distance adaptive modulation. Due to the computational difficulty of the assignment problem, we develop algorithms for 1+1 dedicated/1:1 shared protected ring networks and unprotected mesh networks to that fully utilize the characteristics of the topologies. Numerical experiments elucidate that the introduction of path elasticity and distance adaptive modulation significantly reduce the occupied bandwidth.

  • Router Power Reduction through Dynamic Performance Control Based on Traffic Predictions

    Hiroyuki ITO  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Energy in Electronics Communications

      Vol:
    E95-B No:10
      Page(s):
    3130-3138

    We investigate the possibility of reducing router power consumption through dynamic router performance control. The proposed algorithm employs a typical low pass filter and, therefore, is simple enough to implement in each related element in a router. Numerical experiments using several real Internet traffic data sets show the degree of reduction in power consumption that can be achieved by using the proposed dynamic performance control algorithm. Detailed analysis clarifies the relationships among various parameter values that include packet loss ratios and the degree of power savings. We also propose a simple method based on the leaky bucket model, which can instantaneously estimate the packet loss ratio. It is shown that this simple method yields a good approximation of the results obtained by exact packet-by-packet simulation. The simple method easily enables us to derive appropriate parameter values for the control algorithm for given traffic that may differ in different segments of the Internet.

  • Virtual Fiber Networking and Impact of Optical Path Grooming on Creating Efficient Layer One Services

    Fumisato NARUSE  Yoshiyuki YAMADA  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER

      Vol:
    E95-B No:3
      Page(s):
    723-729

    This paper presents a novel “virtual fiber” network service that exploits wavebands. This service provides virtual direct tunnels that directly convey wavelength paths to connect customer facilities. To improve the resource utilization efficiency of the service, a network design algorithm is developed that can allow intermediate path grooming at limited nodes and can determine the best node location. Numerical experiments demonstrate the effectiveness of the proposed service architecture.

  • Fast VP-Bandwidth Management with Distributed Control in ATM Networks

    Ryutaro KAWAMURA  Hisaya HADAMA  Ken-ichi SATO  Ikuo TOKIZAWA  

     
    PAPER-Communication Networks and Service

      Vol:
    E77-B No:1
      Page(s):
    5-14

    This paper proposes a high-speed VP bandwidth control scheme for ATM networks that utilizes a distributed control mechanism. First, the characteristics of VPs are compared with those of digital paths in STM networks. A distributed control scheme is adopted for rapid control. The basic elements and the necessary distributed function, the control algorithm, and the message transmission mechanism, are elucidated. The bandwidth alteration time with the proposed algorithm is estimated by considering network element processing and queuing delay. The proposed VP bandwidth control scheme can be applied to both public networks and leased line services. Finally, this paper focuses on its application to leased line services, and discusses the resource reduction effects of the proposed scheme.

  • Simultaneous Measurement of Antenna Gain and Complex Permittivity of Liquid in Near-Field Region Using Weighted Regression

    Nozomu ISHII  Hiroki SHIGA  Naoto IKARASHI  Ken-ichi SATO  Lira HAMADA  Soichi WATANABE  

     
    PAPER-Measurements

      Vol:
    E91-B No:6
      Page(s):
    1831-1837

    As a technique for calibrating electric-field probes used in standardized SAR (Specific Absorption Rate) assessment, we have studied the technique using the Friis transmission formula in the tissue-equivalent liquid. It is difficult to measure power transmission between two reference antennas in the far-field region due to large attenuation in the liquid. This means that the conventional Friis transmission formula cannot be applied to our measurement so that we developed an extension of this formula that is valid in the near-field region. In this paper, the method of weighted least squares is introduced to reduce the effect of the noise in the measurement system when the gain of the antenna operated in the liquid is determined by the curve-fitting technique. And we examine how to choose the fitting range to reduce the uncertainty of the estimated gain.

  • Optical Cross-Connect Switch Architectures for Hierarchical Optical Path Networks

    Shoji KAKEHASHI  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Switching for Communications

      Vol:
    E91-B No:10
      Page(s):
    3174-3184

    This paper proposes new switch architectures for hierarchical optical path cross-connect (HOXC) systems. The architectures allow incremental expansion of system scale in terms of the number of input/output fiber ports, wavebands, and optical paths per waveband. These features assure the cost-effective introduction of HOXCs even at the outset when traffic volume is not so large. Furthermore the effectiveness of the proposed switch architectures is demonstrated in a comparison with single-layer OXCs (conventional OXCs). The results provide useful criteria for the introduction of HOXCs in terms of hardware scale.

  • Pre-Adjustment Rerouting for Wavelength Defragmentation in Optical Transparent WDM Networks

    Akihiro KADOHATA  Atsushi WATANABE  Akira HIRANO  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E98-B No:10
      Page(s):
    2014-2021

    We propose a new extension to reconfiguration algorithms used to address wavelength defragmentation to enhance the path accommodation efficiency in optical transparent wavelength division multiplexing networks. The proposed algorithm suppresses the number of fibers employed to search for a reconfigurable wavelength channel by combining routes between the target path and the existing path in a reconfigured wavelength channel. This paper targets three main phases in reconfiguration: i) the reconfiguration trigger; ii) redesign of the wavelength path; and iii) migrating the wavelength paths. The proposed and conventional algorithms are analyzed from the viewpoints of the number of fibers, accommodation rate and the number of migrating sequences. Numerical evaluations show that the number of fibers is suppressed by 9%, and that the accommodation efficiency is increased by approximately 5%-8% compared to when reconfiguration is not performed.

  • Differential Reliability Path Accommodation Design and Reconfiguration in Virtualized Multi-Layer Transport Network

    Akihiro KADOHATA  Takafumi TANAKA  Atsushi WATANABE  Akira HIRANO  Hiroshi HASEGAWA  Ken-ichi SATO  

     
    PAPER

      Vol:
    E98-B No:11
      Page(s):
    2151-2159

    Multi-layer transport networks that utilize sub-lambda paths over a wavelength path have been shown to be effective in accommodating traffic with various levels of granularity. For different service requirements, a virtualized network was proposed where the infrastructure is virtually sliced to accommodate different levels of reliability. On the other hand, network reconfiguration is a promising candidate for quasi-dynamic and multi-granular traffic. Reconfiguration, however, incurs some risks such as service disruption and fluctuations in delay. There has not yet been any study on accommodating and reconfiguring paths according to different service classes in multi-layer transport networks. In this paper, we propose differentiated reconfiguration to address the trade-off relationship between accommodation efficiency and disruption risk in virtualized multi-layer transport networks that considers service classes defined as a combination of including or excluding a secondary path and allowing or not allowing reconfiguration. To implement the proposed network, we propose a multi-layer redundant path accommodation design and reconfiguration algorithm. A reliability evaluation algorithm is also introduced. Numerical evaluations show that when all classes are divided equally, equipment cost can be reduced approximately by 6%. The proposed reconfigurable networks are shown to be a cost effective solution that maintains reliability.

1-20hit(51hit)

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.