1-5hit |
Kenichi TAJIMA Ryoji HAYASHI Kenji ITOH Yoji ISOTA
This paper presents novel phase-continuous frequency hopping (FH) control for a direct frequency synthesizer (DFS) using a quadrature mixer driven by two direct digital synthesizers (DDSs). To achieve wideband FH in both of the lower and the upper sidebands of a local frequency in a quadrature mixer, the proposed DFS decreases or increases the phase of DDS output signals corresponding to frequency offset from a local frequency of the quadrature mixer. To realize phase decrement, the proposed method adds a complement number in a phase accumulator of a DDS, while a conventional DDS does not use phase decrement but uses a switchable combiner. In addition, as the phase accumulator output changes continuously by summing phase increment, the proposed method always assures phase continuity of a DFS output signal, which ends up suppressing sidelobe level of frequency hopped signals. The calculation and measurement results indicate that a sidelobe of a signal spectrum using the proposed phase continuous method is approximately 10 dB better than that using a conventional phase discontinuous method.
Hideyuki NAKAMIZO Kenichi TAJIMA Ryoji HAYASHI Kenji KAWAKAMI Toshiya UOZUMI
This paper shows a new pulse swallow programmable frequency divider with the division step size of 0.5. To realize the division step size of 0.5 by a conventional pulse swallow method, we propose a parallel dual modulus prescaler with the division ratio of P and P + 0.5. It consists of simple circuit elements and has an advantage over the conventional dual modulus prescaler with the division step size of 0.5 in high frequency operation. The proposed parallel dual modulus prescaler with the division ratio 8 and 8.5 is implemented in the 0.13-µm CMOS technology. The proposed architecture achieves 7 times higher frequency operation than the conventional one theoretically. It is verified the functions over 5 GHz.
This paper presents a novel spur suppression technique using a three-phase holding pulse for a direct digital synthesizer (DDS) with a two-phase holding digital-to-analog converter (2PH-DAC). A 2PH-DAC, which uses a reverse-sign step-function as a sampling pulse waveform instead of a commonly-used gate function of zeroth-order hold, enhances the first image of aliasing, which is of higher frequency than the fundamental. Therefore, the first image can be treated as a desired signal, while the fundamental and the second image are spurs for a DDS with a 2PH-DAC (2PH-DDS). The main problem of the 2PH-DDS is close spurs in the case that signal frequency is near Nyquist frequency or sampling frequency. This paper proposes a novel spur suppression technique for a 2PH-DDS. A configuration of a 2PH-DDS is first explained, and spectral properties are analyzed. Based on the analysis, a technique using a three-phase holding pulse to cancel spurs is proposed. Evaluated spur levels of the proposed synthesizer are from -51 to -34 dBc, and are improved by 25 dB or more by the proposed technique.
Hideyuki NAKAMIZO Shintaro SHINJO Koji TSUTSUMI Satoshi YAMAGUCHI Hideharu YOSHIOKA Akihiro OKAZAKI Akinori TAIRA Kenichi TAJIMA
In order to meet various requirements for the 5th generation mobile communication, a high SHF wideband massive-MIMO system has been widely studied which offers wide system bandwidth and high spectral efficiency. A hybrid beamforming configuration which combines analog beamforming by APAA (Active Phased Array Antenna) and digital MIMO signal processing is one of the promising approaches for reducing the complexity and power consumption of the high SHF wideband massive-MIMO system. In order to realize the hybrid beamforming configuration in high SHF band, small size, low power consumption and precise beam forming over the wide-band frequency range are strongly required for RF frontend which constitutes analog beam former. In this paper, a compact RF frontend module for high SHF wideband 5G small cell base station is proposed. This RF frontend module is prototyped. Various key components of the RF frontend module are fabricated in 15GHz band, and measured results show that high RF performances are able to meet the requirements of RF frontend.
Akihito HIRAI Koji TSUTSUMI Hideyuki NAKAMIZO Eiji TANIGUCHI Kenichi TAJIMA Kazutomi MORI Masaomi TSURU Mitsuhiro SHIMOZAWA
In this paper, a high-frequency resolution Digital Frequency Discriminator (DFD) IC using a Time to Digital Converter (TDC) and an edge counter for Instantaneous Frequency Measurement (IFM) is proposed. In the proposed DFD, the TDC measures the time of the maximum periods of divided RF short pulse signals, and the edge counter counts the maximum number of periods of the signal. By measuring the multiple periods with the TDC and the edge counter, the proposed DFD improves the frequency resolution compared with that of the measuring one period because it is proportional to reciprocal of the measurement time of TDC. The DFD was fabricated using 0.18-um SiGe-BiCMOS. Frequency accuracy below 0.39MHz and frequency precision below 1.58 MHz-RMS were achieved during 50 ns detection time in 0.3 GHz to 5.5 GHz band with the temperature range from -40 to 85 degrees.