Kyohei NAKAJIMA Koichi KOBAYASHI Yuh YAMASHITA
Event-triggered control is a control method that the measured signal is sent to the controller only when a certain triggering condition on the measured signal is satisfied. In this paper, we propose a linear quadratic regulator (LQR) with decentralized triggering conditions. First, a suboptimal solution to the design problem of LQRs with decentralized triggering conditions is derived. A state-feedback gain can be obtained by solving a convex optimization problem with LMI (linear matrix inequality) constraints. Next, the relation between centralized and decentralized triggering conditions is discussed. It is shown that control performance of an LQR with decentralized event-triggering is better than that with centralized event-triggering. Finally, a numerical example is illustrated.
Ryosuke ADACHI Yuh YAMASHITA Koichi KOBAYASHI
In this paper, we consider the design problem of an unknown-input observer for distributed network systems under the existence of communication delays. In the proposed method, each node estimates all states and calculates inputs from its own estimate. It is assumed that the controller of each node is given by an observer-based controller. When calculating each node, the input values of the other nodes cannot be utilized. Therefore, each node calculates alternative inputs instead of the unknown inputs of the other nodes. The alternative inputs are generated by own estimate based on the feedback controller of the other nodes given by the assumption. Each node utilizes these values instead of the unknown inputs when calculating the estimation and delay compensation. The stability of the estimation error of the proposed observer is proven by a Lyapunov-Krasovskii functional. The stability condition is given by a linear matrix inequality (LMI). Finally, the result of a numerical simulation is shown to verify the effectiveness of the proposed method.
Koichi KOBAYASHI Mifuyu KIDO Yuh YAMASHITA
In this paper, a surveillance system by multiple agents, which is called a multi-agent surveillance system, is studied. A surveillance area is given by an undirected connected graph. Then, the optimal control problem for multi-agent surveillance systems (the optimal surveillance problem) is to find trajectories of multiple agents that travel each node as evenly as possible. In our previous work, this problem is reduced to a mixed integer linear programming problem. However, the computation time for solving it exponentially grows with the number of agents. To overcome this technical issue, a new model predictive control method for multi-agent surveillance systems is proposed. First, a procedure of individual optimization, which is a kind of approximate solution methods, is proposed. Next, a method to improve the control performance is proposed. In addition, an event-triggering condition is also proposed. The effectiveness of the proposed method is presented by a numerical example.
Fuma MOTOYAMA Koichi KOBAYASHI Yuh YAMASHITA
A Boolean network (BN) is well known as a discrete model for analysis and control of complex networks such as gene regulatory networks. Since complex networks are large-scale in general, it is important to consider model reduction. In this paper, we consider model reduction that the information on fixed points (singleton attractors) is preserved. In model reduction studied here, the interaction graph obtained from a given BN is utilized. In the existing method, the minimum feedback vertex set (FVS) of the interaction graph is focused on. The dimension of the state is reduced to the number of elements of the minimum FVS. In the proposed method, we focus on complement and absorption laws of Boolean functions in substitution operations of a Boolean function into other one. By simplifying Boolean functions, the dimension of the state may be further reduced. Through a numerical example, we present that by the proposed method, the dimension of the state can be reduced for BNs that the dimension of the state cannot be reduced by the existing method.
Sho OBATA Koichi KOBAYASHI Yuh YAMASHITA
In a power network, it is important to detect a cyber attack. In this paper, we propose a method for detecting false data injection (FDI) attacks in distributed state estimation. An FDI attack is well known as one of the typical cyber attacks in a power network. As a method of FDI attack detection, we consider calculating the residual (i.e., the difference between the observed and estimated values). In the proposed detection method, the tentative residual (estimated error) in ADMM (Alternating Direction Method of Multipliers), which is one of the powerful methods in distributed optimization, is applied. First, the effect of an FDI attack is analyzed. Next, based on the analysis result, a detection parameter is introduced based on the residual. A detection method using this parameter is then proposed. Finally, the proposed method is demonstrated through a numerical example on the IEEE 14-bus system.
Kyohei MURAKATA Koichi KOBAYASHI Yuh YAMASHITA
The multi-agent surveillance problem is to find optimal trajectories of multiple agents that patrol a given area as evenly as possible. In this paper, we consider the multi-agent surveillance problem based on travel cost minimization. The surveillance area is given by an undirected graph. The penalty for each agent is introduced to evaluate the surveillance performance. Through a mixed logical dynamical system model, the multi-agent surveillance problem is reduced to a mixed integer linear programming (MILP) problem. In model predictive control, trajectories of agents are generated by solving the MILP problem at each discrete time. Furthermore, a condition that the MILP problem is always feasible is derived based on the Chinese postman problem. Finally, the proposed method is demonstrated by a numerical example.
Keita TERASHIMA Koichi KOBAYASHI Yuh YAMASHITA
In a multi-agent system, it is important to consider a design method of cooperative actions in order to achieve a common goal. In this paper, we propose two novel multi-agent reinforcement learning methods, where the control specification is described by linear temporal logic formulas, which represent a common goal. First, we propose a simple solution method, which is directly extended from the single-agent case. In this method, there are some technical issues caused by the increase in the number of agents. Next, to overcome these technical issues, we propose a new method in which an aggregator is introduced. Finally, these two methods are compared by numerical simulations, with a surveillance problem as an example.
Koichi KOBAYASHI Yasuhito FUKUI Kunihiko HIRAISHI
A stochastic hybrid system can express complex dynamical systems such as biological systems and communication networks, but computation for analysis and control is frequently difficult. In this paper, for a class of stochastic hybrid systems, a discrete abstraction method in which a given system is transformed into a finite-state system is proposed based on the notion of bounded bisimulation. In the existing discrete abstraction method based on bisimulation, a computational procedure is not in general terminated. In the proposed method, only the behavior for the finite time interval is expressed as a finite-state system, and termination is guaranteed. Furthermore, analysis of genetic toggle switches is also discussed as an application.
Koichi KITAMURA Koichi KOBAYASHI Yuh YAMASHITA
In cyber-physical systems (CPSs) that interact between physical and information components, there are many sensors that are connected through a communication network. In such cases, the reduction of communication costs is important. Event-triggered control that the control input is updated only when the measured value is widely changed is well known as one of the control methods of CPSs. In this paper, we propose a design method of output feedback controllers with decentralized event-triggering mechanisms, where the notion of uniformly ultimate boundedness is utilized as a control specification. Using this notion, we can guarantee that the state stays within a certain set containing the origin after a certain time, which depends on the initial state. As a result, the number of times that the event occurs can be decreased. First, the design problem is formulated. Next, this problem is reduced to a BMI (bilinear matrix inequality) optimization problem, which can be solved by solving multiple LMI (linear matrix inequality) optimization problems. Finally, the effectiveness of the proposed method is presented by a numerical example.
A PBN is well known as a mathematical model of complex network systems such as gene regulatory networks. In Boolean networks, interactions between nodes (e.g., genes) are modeled by Boolean functions. In PBNs, Boolean functions are switched probabilistically. In this paper, for a PBN, a simplified representation that is effective in analysis and control is proposed. First, after a polynomial representation of a PBN is briefly explained, a simplified representation is derived. Here, the steady-state value of the expected value of the state is focused, and is characterized by a minimum feedback vertex set of an interaction graph expressing interactions between nodes. Next, using this representation, input selection and stabilization are discussed. Finally, the proposed method is demonstrated by a biological example.
Fuma MOTOYAMA Koichi KOBAYASHI Yuh YAMASHITA
Control of complex networks such as gene regulatory networks is one of the fundamental problems in control theory. A Boolean network (BN) is one of the mathematical models in complex networks, and represents the dynamic behavior by Boolean functions. In this paper, a solution method for the finite-time control problem of BNs is proposed using a BDD (binary decision diagram). In this problem, we find all combinations of the initial state and the control input sequence such that a certain control specification is satisfied. The use of BDDs enables us to solve this problem for BNs such that the conventional method cannot be applied. First, after the outline of BNs and BDDs is explained, the problem studied in this paper is given. Next, a solution method using BDDs is proposed. Finally, a numerical example on a 67-node BN is presented.
Sheng HAO Yuh YAMASHITA Koichi KOBAYASHI
This paper proposes an active vibration-suppression control method for the systems with multiple disturbances using only the relative displacements and velocities. The controller can suppress the vibration of the main body in the world coordinate, where a velocity disturbance and a force disturbance affect the system simultaneously. The added device plays a similar role as an accelerometer, but we avoid the algebraic loop. The main idea of the feedback law is to convert a nonlinear system into an aseismatic desired system by using the energy shaping technique. A parameter selection procedure is derived by combining the constraints of nonlinear IDA-PBC and the evaluation of the control performance of the linearly approximated system. The effectiveness of the proposed method is confirmed by simulations for an example.
Sho OBATA Koichi KOBAYASHI Yuh YAMASHITA
In the state estimation of steady-state power networks, a cyber attack that cannot be detected from the residual (i.e., the estimation error) is called a false data injection (FDI) attack. In this letter, to enforce the security of power networks, we propose a method of detecting an FDI attack. In the proposed method, an FDI attack is detected by randomly choosing sensors used in the state estimation. The effectiveness of the proposed method is presented by two examples including the IEEE 14-bus system.
Koichi KOBAYASHI Kunihiko HIRAISHI
A Boolean network model is one of the models of gene regulatory networks, and is widely used in analysis and control. Although a Boolean network is a class of discrete-time nonlinear systems and expresses the synchronous behavior, it is important to consider the asynchronous behavior. In this paper, using a Petri net, a new modeling method of asynchronous Boolean networks with control inputs is proposed. Furthermore, the optimal control problem of Petri nets expressing asynchronous Boolean networks is formulated, and is reduced to an integer programming problem. The proposed approach will provide us one of the mathematical bases of control methods for gene regulatory networks.
Koichi KOBAYASHI Kunihiko HIRAISHI
Event-triggered and self-triggered control methods are an important control strategy in networked control systems. Event-triggered control is a method that the measured signal is sent to the controller (i.e., the control input is recomputed) only when a certain condition is satisfied. Self-triggered control is a method that the control input and the (non-uniform) sampling interval are computed simultaneously. In this paper, we propose new methods of event-triggered control and self-triggered control from the viewpoint of online optimization (i.e., model predictive control). In self-triggered control, the control input and the sampling interval are obtained by solving a pair of a quadratic programming (QP) problem and a mixed integer linear programming (MILP) problem. In event-triggered control, whether the control input is updated or not is determined by solving two QP problems. The effectiveness of the proposed methods is presented by numerical examples.
Koichi KOBAYASHI Kunihiko HIRAISHI Nguyen Van TANG
In this paper, we propose a new approximate algorithm for the model predictive control (MPC) problem with a time-varying reference of hybrid systems. The proposed algorithm consists of an offline computation and an online computation. In the offline computation, candidates of mode sequences are derived. In the online computation, after the mode sequence is uniquely decided among candidates, the finite-time optimal control problem, i.e., the quadratic programming problem, is solved. So by applying the proposed algorithm, the computational amount of the online computation is decreased. First, the MPC problem with a time-varying reference is formulated. Next, the proposed algorithm is explained, and the accuracy of the obtained approximate solution is discussed. Finally, the effectiveness of the proposed method is shown by a numerical example.
Ryo MASUDA Koichi KOBAYASHI Yuh YAMASHITA
The surveillance problem is to find optimal trajectories of agents that patrol a given area as evenly as possible. In this paper, we consider multiple agents with fuel constraints. The surveillance area is given by a weighted directed graph, where the weight assigned to each arc corresponds to the fuel consumption/supply. For each node, the penalty to evaluate the unattended time is introduced. Penalties, agents, and fuels are modeled by a mixed logical dynamical system model. Then, the surveillance problem is reduced to a mixed integer linear programming (MILP) problem. Based on the policy of model predictive control, the MILP problem is solved at each discrete time. In this paper, the feasibility condition for the MILP problem is derived. Finally, the proposed method is demonstrated by a numerical example.
Miwa YOSHIMOTO Koichi KOBAYASHI Kunihiko HIRAISHI
In this paper, we present a new method for diagnosis of stochastic discrete event system. The method is based on anomaly detection for sequences. We call the method sequence profiling (SP). SP does not require any system models and any system-specific knowledge. The only information necessary for SP is event logs from the target system. Using event logs from the system in the normal situation, N-gram models are learned, where the N-gram model is used as approximation of the system behavior. Based on the N-gram model, the diagnoser estimates what kind of faults has occurred in the system, or may conclude that no faults occurs. Effectiveness of the proposed method is demonstrated by application to diagnosis of a multi-processor system.
Kunihiko HIRAISHI Koichi KOBAYASHI
In previous papers by the authors, a new scheme for diagnosis of stochastic discrete event systems, called sequence profiling (SP), is proposed. From given event logs, N-gram models that approximate the behavior of the target system are extracted. N-gram models are used for discovering discrepancy between observed event logs and the behavior of the system in the normal situation. However, when the target system is a distributed system consisting of several subsystems, event sequences from subsystems may be interleaved, and SP cannot separate the faulty event sequence from the interleaved sequence. In this paper, we introduce wildcard characters into event patterns. This contributes to removing the effect by subsystems which may not be related to faults.
Shumpei YOSHIKAWA Koichi KOBAYASHI Yuh YAMASHITA
Event-triggered control is a method that the control input is updated only when a certain triggering condition is satisfied. In networked control systems, quantization errors via A/D conversion should be considered. In this paper, a new method for quantized event-triggered control with switching triggering conditions is proposed. For a discrete-time linear system, we consider the problem of finding a state-feedback controller such that the closed-loop system is uniformly ultimately bounded in a certain ellipsoid. This problem is reduced to an LMI (Linear Matrix Inequality) optimization problem. The volume of the ellipsoid may be adjusted. The effectiveness of the proposed method is presented by a numerical example.