1-3hit |
Kwan L. YEUNG Tak-Shing P. YUM
The optimization of channel assignment in cellular mobile networks is an NP-complete combinatorial optimization problem. For any reasonable size network, only sub-optimal solutions can be obtained by heuristic algorithms. In this paper, six channel assignment heuristic algorithms are proposed and evaluated. They are the combinations of three channel assignment strategies and two cell ordering methods. What we found are (i) the node-color ordering of cells is a more efficient ordering method than the node-degree ordering; (ii) the frequency exhaustive strategy is more suitable for systems with highly non-uniformly distributed traffic, and the requirement exhaustive strategy is more suitable for systems with less non-uniformly distributed traffic; and (iii) the combined frequency and requirement exhaustive strategy with node-color re-ordering is the most efficient algorithm. The frequency spans obtained using the proposed algorithms are much lower than that reported in the literature, and in many cases are equal to the theoretical lower bounds.
King-Sun CHAN Kwan L. YEUNG Sammy C. H. CHAN
The optimistic analytical results for performance analysis of buffered banyan networks are mainly due to certain independence assumptions used for simplifying analysis. To capture more effects of cell correlation, a refined analytical model for both single-buffered and multiple buffered banyan networks is proposed in this paper. When cell output contention occurs at a 2 2 switch element, two contention resolution schemes are used. One is based on randomly choosing the winning cell and another is to give priority to the cell which has been delayed in the current buffer for at least one stage cycle. The switch throughput, cell transfer delay and cell delay deviation for single-buffered banyan networks with and without using priority scheme are derived. Then the model is generalized to multiple buffered banyan networks where analytical expressions for throughput and delay are obtained. We show that using the priority scheme the cell delay deviation is reduced and the influence on throughput performance is insignificant. The results obtained from our analytical model are compared with the simulations and good agreement is observed. Comparisons with some proposed analytical models in the literature reveal that our model is more accurate and powerful in predicting the performance of buffered banyan networks.
Kwan L. YEUNG Hai SHI Ngai Han. LIU
In this paper, an analytical model for evaluating the performance of a packet scheduling algorithm, called lookahead scheduling, is proposed. Using lookahead scheduling, each input port of a switch has B packet buffers. A packet arrives at an input port is scheduled for conflict-free transmission for up to B time slots in advance. If it cannot be scheduled for transmission in the next B slots, the packet is immediately dropped to prevent it from blocking the subsequently arrived packets. To evaluate this scheduling algorithm, we first construct a set of recursive equations for obtaining the buffer occupancy and the probability that a packet cannot be placed into a buffer. Based on that, analytical expressions for switch throughput, packet loss probability and mean packet delay are derived. Analytical results are then compared with the simulations and good agreement is found. A pipeline implementation of the lookahead scheduling is also proposed in this paper.