1-2hit |
He LI Yutaro IWAMOTO Xianhua HAN Lanfen LIN Akira FURUKAWA Shuzo KANASAKI Yen-Wei CHEN
Convolutional neural networks (CNNs) have become popular in medical image segmentation. The widely used deep CNNs are customized to extract multiple representative features for two-dimensional (2D) data, generally called 2D networks. However, 2D networks are inefficient in extracting three-dimensional (3D) spatial features from volumetric images. Although most 2D segmentation networks can be extended to 3D networks, the naively extended 3D methods are resource-intensive. In this paper, we propose an efficient and accurate network for fully automatic 3D segmentation. Specifically, we designed a 3D multiple-contextual extractor to capture rich global contextual dependencies from different feature levels. Then we leveraged an ROI-estimation strategy to crop the ROI bounding box. Meanwhile, we used a 3D ROI-attention module to improve the accuracy of in-region segmentation in the decoder path. Moreover, we used a hybrid Dice loss function to address the issues of class imbalance and blurry contour in medical images. By incorporating the above strategies, we realized a practical end-to-end 3D medical image segmentation with high efficiency and accuracy. To validate the 3D segmentation performance of our proposed method, we conducted extensive experiments on two datasets and demonstrated favorable results over the state-of-the-art methods.
Shiyu TENG Jiaqing LIU Yue HUANG Shurong CHAI Tomoko TATEYAMA Xinyin HUANG Lanfen LIN Yen-Wei CHEN
Depression is a prevalent mental disorder affecting a significant portion of the global population, leading to considerable disability and contributing to the overall burden of disease. Consequently, designing efficient and robust automated methods for depression detection has become imperative. Recently, deep learning methods, especially multimodal fusion methods, have been increasingly used in computer-aided depression detection. Importantly, individuals with depression and those without respond differently to various emotional stimuli, providing valuable information for detecting depression. Building on these observations, we propose an intra- and inter-emotional stimulus transformer-based fusion model to effectively extract depression-related features. The intra-emotional stimulus fusion framework aims to prioritize different modalities, capitalizing on their diversity and complementarity for depression detection. The inter-emotional stimulus model maps each emotional stimulus onto both invariant and specific subspaces using individual invariant and specific encoders. The emotional stimulus-invariant subspace facilitates efficient information sharing and integration across different emotional stimulus categories, while the emotional stimulus specific subspace seeks to enhance diversity and capture the distinct characteristics of individual emotional stimulus categories. Our proposed intra- and inter-emotional stimulus fusion model effectively integrates multimodal data under various emotional stimulus categories, providing a comprehensive representation that allows accurate task predictions in the context of depression detection. We evaluate the proposed model on the Chinese Soochow University students dataset, and the results outperform state-of-the-art models in terms of concordance correlation coefficient (CCC), root mean squared error (RMSE) and accuracy.