1-4hit |
Takumi KOBAYASHI Masahiro MINAGAWA Akira BABA Keizo KATO Kazunari SHINBO
Improvement of the on/off ratio in organic field-effect transistors through the use of pentacene and molybdenum trioxide (MoO3) layers was attempted via the preparation of a discontinuous MoO3 layer using a mesh mask. We prepared three types of devices. Device A had a conventional top-contact structure with an n-type Si wafer and a 200-nm-thick SiO2 film onto which we deposited a 70-nm-thick pentacene film and a 30-nm-thick layer of Au top electrodes. Devices B and C had a similar structure to device A but received a continuous and a discontinuous MoO3 layer, respectively. The off current in Device B was remarkably high; in contrast, the off current in Device C was reduced and dependent on the separation of the MoO3 layer. It was deduced that the high resistance of the area without MoO3 contributed to the reduced off current.
Masahiro MINAGAWA Hidetsugu TAMURA Ryo SAKIKAWA Itsuki IKARASHI Akira BABA Kazunari SHINBO Keizo KATO Futao KANEKO
We fabricated organic field-effect transistors (OFETs) having a thin layer of molybdenum trioxide (MoO$_3$), a Lewis acid, and evaluated their electrical characteristics. The insertion of a thin MoO$_3$ layer reduces the on/off ratio but improves the apparent mobility of the charge carriers. To identify the dominant mechanism responsible for this effect, we characterized devices having a 69-nm-thick pentacene layer with a 1-nm-thick MoO$_3$ layer either between the gold source and the drain electrodes or only directly under these electrodes. The former device exhibited a low on/off ratio, whereas the latter device exhibited an on/off ratio comparable to those of conventional pentacene OFETs without a thin MoO$_3$ layer, suggesting that the formation of charge-transfer (CT) complexes immediately above the conduction channel is the critical mechanism. CT complexes at the pentacene/MoO$_3$ interface immediately above the conduction channel contribute to the formation of an effective channel for off-currents as well as drain currents. Moreover, we also attempted to improve the on/off ratio by using a cloth to rub the surface of a thin MoO$_3$ layer immediately above the conduction channel to create what we believe to be a profile with abrupt changes in height in the direction of the drain current conduction in OFETs. Consequently, it was found that such a rubbed MoO$_3$ layer had a surface with a scratched pattern, and the on/off ratio of the OFET was improved, indicating that controlling the CT complex formation by patterning a MoO$_3$ layer can reduce the off-current in OFETs having a pentacene/MoO$_3$ active layer.
Kazunari SHINBO Yuta HIRANO Masayuki SAKAI Masahiro MINAGAWA Yasuo OHDAIRA Akira BABA Keizo KATO Futao KANEKO
A half-cylindrical BK-7 prism/dielectric film with a grating/Ag film/fluorescent polymer film structure was prepared, and its surface plasmon (SP) excitation property was investigated. It was confirmed experimentally that SP excitations are possible in this structure by using prism and grating couplings. The SP excitation property depended on the direction of the grating vector. Furthermore, intense photoluminescence was observed when the SPs were simultaneously excited at the Ag/polymer interface by prism coupling and at the Cytop/Ag interface by grating coupling.
Megumi HAFUKA Masahiro MINAGAWA Yasuo OHDAIRA Akira BABA Kazunari SHINBO Keizo KATO Futao KANEKO
Attenuated total reflection (ATR) property utilizing surface plasmon (SP) excitation was investigated for BK-7 prism/MgF2/Ag film/fluorescent organic dye film structure. In the structure, it is expected that SPs are excited at MgF2/Ag and Ag/dye film interfaces by Otto and Kretschmann configurations, respectively. In the experimental ATR curve, reflection dips for the SP excitations at the interfaces could be detected. Furthermore, SP emission lights were observed by irradiation of Ar ion laser beam from the dye film side. The SP emission light curve with two peaks was observed and it was also considered that the peaks corresponded to the SP excitation of Otto and Kretschmann configurations. The SP emission light spectra indicated the excited fluorescent dyes induced the SP emission lights. Intense emission light of Otto configuration was observed in this sample.