1-3hit |
Masaki SHIRAIWA Yoshinari AWAJI Naoya WADA Atsushi KANNO Toshiaki KURI Pham TIEN DAT Tetsuya KAWANISHI
We report the adaptability of the burst-mode erbium-doped fiber amplifier (BM-EDFA) for uplink transmission of sharply rising analog radio-over-fiber (RoF) signals by using long-term evolution (LTE) -Advanced format on a mobile front-haul. Recent drastically increased mobile data traffic is boosting the demand for high-speed radio communication technologies for next-generation mobile services to enhance user experience. However, the latency become increasingly visible as serious issues. Analog RoF technology is a promising candidate for a next generation mobile front-haul to realize low latency. For the uplink, an RoF signal may rise sharply in response to a burst of in-coming radio signals. We propose that a newly developed BM-EDFA is applied for such a sharply rising RoF signal transmission. The BM-EDFA that we designed using enhanced intrinsic saturation power EDF to suppress the gain transient caused by received optical power fluctuations with optical feedback. The new BM-EDFA was designed for a wider linear output power range and lower NF than the previous BM-EDFA. The observed range of received optical power satisfying an error vector magnitude of less than 8%rms achieved over 16dB. We consider that our BM-EDFAs with wide linear ranges of output power will be a key device for the LTE-Advanced RoF uplink signal transmission via optical access networks for the next-generation mobile front-haul.
Sugang XU Noboru YOSHIKANE Masaki SHIRAIWA Takehiro TSURITANI Hiroaki HARAI Yoshinari AWAJI Naoya WADA
Past disasters, e.g., mega-quakes, tsunamis, have taught us that it is difficult to fully repair heavily damaged network systems in a short time. The only method for quickly restoring core communications is to start by fully utilizing the surviving network resources from different networks. However, as these networks might be built using different vendors' products (which are often incompatible with each other), the interconnection and utilization of these surviving resources are not straightforward. In this paper, we consider an all-optical multi-vendor interconnection method as an efficient reactive approach during disaster recovery. First, we introduce a disaster recovery scenario in which we use the multi-vendor interconnection approach. Second, we present two sub-problems and propose solutions: (1) network planning problem for multi-vendor interconnection-based emergency optical network construction and (2) interconnection problem for multi-vendor optical networks including both the data-plane and the control-and-management-plane. To enable the operation of multi-vendor systems, command translation middleware is developed for individual vendor-specific network control-and-management systems. Simulations are conducted to evaluate our proposal for sub-problem (1). The results reveal that multi-vendor interconnection can lead to minimum-cost network recovery. Additionally, an emergency optical network prototype is implemented on a two-vendor optical network test-bed to address sub-problem (2). Demonstrations of both the data-plane and the control-and-management-plane validate the feasibility of the multi-vendor interconnection approach in disaster recovery.
Sugang XU Goshi SATO Masaki SHIRAIWA Katsuhiro TEMMA Yasunori OWADA Noboru YOSHIKANE Takehiro TSURITANI Toshiaki KURI Yoshinari AWAJI Naruto YONEMOTO Naoya WADA
Large-scale disasters can lead to a severe damage or destruction of optical transport networks including the data-plane (D-plane) and control and management-plane (C/M-plane). In addition to D-plane recovery, quick recovery of the C/M-plane network in modern software-defined networking (SDN)-based fiber optical networks is essential not only for emergency control of surviving optical network resources, but also for quick collection of information related to network damage/survivability to enable the optimal recovery plan to be decided as early as possible. With the advent of the Internet of Things (IoT) technologies, low energy consumption, and low-cost IoT devices have been more common. Corresponding long-distance networking technologies such as low-power wide-area (LPWA) and LPWA-based mesh (LPWA-mesh) networks promise wide coverage sensing and environment data collection capabilities. We are motivated to take an infrastructure-less IoT approach to provide long-distance, low-power and inexpensive wireless connectivity and create an emergency C/M-plane network for early disaster recovery. In this paper, we investigate the feasibility of fiber networks C/M-plane recovery using an IoT-based extremely narrow-band, and lossy links system (FRENLL). For the first time, we demonstrate a field-trial experiment of a long-latency/loss tolerable SDN C/M-plane that can take advantage of widely available IoT resources and easy-to-create wireless mesh networks to enable the timely recovery of the C/M-plane after disaster.