Author Search Result

[Author] Masamitsu HONDA(2hit)

1-2hit
  • Characteristics of Small Gap Discharge Events and Their EMI Effects

    Masamitsu HONDA  Satoshi ISOFUKU  

     
    PAPER

      Vol:
    E98-B No:7
      Page(s):
    1220-1226

    This paper shows that the induced peak voltage on the short monopole antenna by the EM field radiated from a small gap discharge when the gap width was experimentally changed from 10 to 360µm was not directly proportional to the discharge voltage between the gap. It was found that the 10mm short monopole antenna induced peak voltage had a peak value between 40 and 60µm gap width.

  • Fundamental Aspects of ESD Phenomena and Its Measurement Techniques

    Masamitsu HONDA  

     
    INVITED PAPER

      Vol:
    E79-B No:4
      Page(s):
    457-461

    This paper clarified fundamental aspects of both triboelectric processes and electrostatic discharge (ESD) phenomena to the electronic systems. A chance for ESD can occur if a charged metal object (steel piped chair, for example) contacts or collides with another metal objects at moderate speed. At metal-metal ESD event, the metal objects act as a radiation antenna in a very short time (some 100ps, for example) which emanates impulsive electromagnetic fields with unipolarity into the surrounding space. Because of ESD at low-voltage (3kV or less) conditions, the direction of electrons movement at the spark gap is always unidirectional and fixed. The spark gap works as a momentary switch and also as a "diode." The dominant fields radiated from the metal objects are impulsive electric fields or impulsive magnetic fields which depend on the metal object's electrical and geometric conditions. This impulsive electromagnetic fields penetrate electronic systems, causing electromagnetic interference (EMI) such as malfunctions or circuit upset. The difference between EMI actions in high-voltage ESD and low-voltage ESD is experimentally analyzed in terms of energy conversion/consumption. A series of experiments revealed that EMI actions due to the metal-metal ESD are not proportional to the charge voltage nor the discharge current. In order to capture single shot impulsive electromagnetic fields very close to the ESD point (wave source), a short monopole antenna as an ultra broad-band field sensor was devised. As for signal transmissions between the short monopole antenna and the instrument (receiver), micro/millimeter wave techniques were applied. The transmission line's minimum band width DC-18.5GHz is required for time domain measurements of low-voltage ESD.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.