1-2hit |
Michael JENSEN Britton QUIST Nicolas BIKHAZI
While significant work has been dedicated to analyzing the performance of antennas for multiple-input multiple-output (MIMO) and diversity systems, little has appeared on synthesizing optimal antennas for these systems. This paper explores optimal antenna characteristics given understanding about the average structure of the propagation environment, making the results applicable for time-varying channels created by mobile nodes or scatterer motion. Specifically, it examines optimal antenna designs for the cases where 1) the antennas reside in a fixed aperture or 2) the number of antenna elements is fixed (under fast-fading conditions with spatially correlated signals).
This paper presents a framework for the analysis of multi-antenna communication systems with mutually-coupled elements. The approach uses a network model that includes the coupled antennas, the propagation channel, the receiver matching network, a realistic noise model for the receive amplifiers, and externally generated interference. The general scheme is applied to diversity receivers, multiple-input multiple-output, and adaptive array architectures. Application of the formulation to coupled dipole antennas illustrates the impact of both mutual coupling and receiver matching on the performance of several representative multi-antenna applications.