Author Search Result

[Author] Min LU(8hit)

1-8hit
  • Degrees of Freedom of the MIMO K-way Relay Channel with Fractional Signal Space Alignment

    Bofeng YUAN  Xuewen LIAO  Xinmin LUO  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E96-B No:9
      Page(s):
    2281-2292

    The multiple-input-multiple-output (MIMO) Gaussian wireless network with K users and an intermediate relay is investigated. In this network, each user with available local channel state information (CSI) intends to convey a multicast message to all other users while receiving all messages from other users via the relay. This model is termed the MIMO K-way relay channel with distributed CSI. For this channel, the sum capacity is shown as MK/(K-1)log(SNR)+o(SNR) where each user and the relay is equipped with M antennas. Achievability is based on the signal space alignment strategy with a K-1 time slot extension. A most general case is then considered, in which each user intends to recover all messages required within T time slots. We provide an improved scheme called fractional signal space alignment which achieves MK/(K-1) degrees of freedom in the general case and the feasibility condition is also explored.

  • Turbidity Underwater Image Restoration Using Spectral Properties and Light Compensation

    Huimin LU  Yujie LI  Shota NAKASHIMA  Seiichi SERIKAWA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2015/10/20
      Vol:
    E99-D No:1
      Page(s):
    219-227

    Absorption, scattering, and color distortion are three major issues in underwater optical imaging. Light rays traveling through water are scattered and absorbed according to their wavelength. Scattering is caused by large suspended particles that degrade underwater optical images. Color distortion occurs because different wavelengths are attenuated to different degrees in water; consequently, images of ambient underwater environments are dominated by a bluish tone. In the present paper, we propose a novel underwater imaging model that compensates for the attenuation discrepancy along the propagation path. In addition, we develop a fast weighted guided normalized convolution domain filtering algorithm for enhancing underwater optical images. The enhanced images are characterized by a reduced noise level, better exposure in dark regions, and improved global contrast, by which the finest details and edges are enhanced significantly.

  • ConvNeXt-Haze: A Fog Image Classification Algorithm for Small and Imbalanced Sample Dataset Based on Convolutional Neural Network

    Fuxiang LIU  Chen ZANG  Lei LI  Chunfeng XU  Jingmin LUO  

     
    PAPER

      Pubricized:
    2022/11/22
      Vol:
    E106-D No:4
      Page(s):
    488-494

    Aiming at the different abilities of the defogging algorithms in different fog concentrations, this paper proposes a fog image classification algorithm for a small and imbalanced sample dataset based on a convolution neural network, which can classify the fog images in advance, so as to improve the effect and adaptive ability of image defogging algorithm in fog and haze weather. In order to solve the problems of environmental interference, camera depth of field interference and uneven feature distribution in fog images, the CutBlur-Gauss data augmentation method and focal loss and label smoothing strategies are used to improve the accuracy of classification. It is compared with the machine learning algorithm SVM and classical convolution neural network classification algorithms alexnet, resnet34, resnet50 and resnet101. This algorithm achieves 94.5% classification accuracy on the dataset in this paper, which exceeds other excellent comparison algorithms at present, and achieves the best accuracy. It is proved that the improved algorithm has better classification accuracy.

  • Color Correction Method Considering Hue Information for Dichromats Open Access

    Shi BAO  Xiaoyan SONG  Xufei ZHUANG  Min LU  Gao LE  

     
    PAPER-Image

      Pubricized:
    2024/04/22
      Vol:
    E107-A No:9
      Page(s):
    1496-1508

    Images with rich color information are an important source of information that people obtain from the objective world. Occasionally, it is difficult for people with red-green color vision deficiencies to obtain color information from color images. We propose a method of color correction for dichromats based on the physiological characteristics of dichromats, considering hue information. First, the hue loss of color pairs under normal color vision was defined, an objective function was constructed on its basis, and the resultant image was obtained by minimizing it. Finally, the effectiveness of the proposed method is verified through comparison tests. Red-green color vision deficient people fail to distinguish between partial red and green colors. When the red and green connecting lines are parallel to the a* axis of CIE L*a*b*, red and green perception defectives cannot distinguish the color pair, but can distinguish the color pair parallel to the b* axis. Therefore, when two colors are parallel to the a* axis, their color correction yields good results. When color correction is performed on a color, the hue loss between the two colors under normal color vision is supplemented with b* so that red-green color vision-deficient individuals can distinguish the color difference between the color pairs. The magnitude of the correction is greatest when the connecting lines of the color pairs are parallel to the a* axis, and no color correction is applied when the connecting lines are parallel to the b* axis. The objective evaluation results show that the method achieves a higher score, indicating that the proposed method can maintain the naturalness of the image while reducing confusing colors.

  • Single Stage Vehicle Logo Detector Based on Multi-Scale Prediction

    Junxing ZHANG  Shuo YANG  Chunjuan BO  Huimin LU  

     
    PAPER-Pattern Recognition

      Pubricized:
    2020/07/14
      Vol:
    E103-D No:10
      Page(s):
    2188-2198

    Vehicle logo detection technology is one of the research directions in the application of intelligent transportation systems. It is an important extension of detection technology based on license plates and motorcycle types. A vehicle logo is characterized by uniqueness, conspicuousness, and diversity. Therefore, thorough research is important in theory and application. Although there are some related works for object detection, most of them cannot achieve real-time detection for different scenes. Meanwhile, some real-time detection methods of single-stage have performed poorly in the object detection of small sizes. In order to solve the problem that the training samples are scarce, our work in this paper is improved by constructing the data of a vehicle logo (VLD-45-S), multi-stage pre-training, multi-scale prediction, feature fusion between deeper with shallow layer, dimension clustering of the bounding box, and multi-scale detection training. On the basis of keeping speed, this article improves the detection precision of the vehicle logo. The generalization of the detection model and anti-interference capability in real scenes are optimized by data enrichment. Experimental results show that the accuracy and speed of the detection algorithm are improved for the object of small sizes.

  • Nonnegative Component Representation with Hierarchical Dictionary Learning Strategy for Action Recognition

    Jianhong WANG  Pinzheng ZHANG  Linmin LUO  

     
    LETTER-Pattern Recognition

      Pubricized:
    2016/01/13
      Vol:
    E99-D No:4
      Page(s):
    1259-1263

    Nonnegative component representation (NCR) is a mid-level representation based on nonnegative matrix factorization (NMF). Recently, it has attached much attention and achieved encouraging result for action recognition. In this paper, we propose a novel hierarchical dictionary learning strategy (HDLS) for NMF to improve the performance of NCR. Considering the variability of action classes, HDLS clusters the similar classes into groups and forms a two-layer hierarchical class model. The groups in the first layer are disjoint, while in the second layer, the classes in each group are correlated. HDLS takes account of the differences between two layers and proposes to use different dictionary learning methods for this two layers, including the discriminant class-specific NMF for the first layer and the discriminant joint dictionary NMF for the second layer. The proposed approach is extensively tested on three public datasets and the experimental results demonstrate the effectiveness and superiority of NCR with HDLS for large-scale action recognition.

  • Visual Knowledge Structure Reasoning with Intelligent Topic Map

    Huimin LU  Boqin FENG  Xi CHEN  

     
    PAPER-Artificial Intelligence, Data Mining

      Vol:
    E93-D No:10
      Page(s):
    2805-2812

    This paper presents a visual knowledge structure reasoning method using Intelligent Topic Map which extends the conventional Topic Map in structure and enhances its reasoning functions. Visual knowledge structure reasoning method integrates two types of knowledge reasoning: the knowledge logical relation reasoning and the knowledge structure reasoning. The knowledge logical relation reasoning implements knowledge consistency checking and the implicit associations reasoning between knowledge points. We propose a Knowledge Unit Circle Search strategy for the knowledge structure reasoning. It implements the semantic implication extension, the semantic relevant extension and the semantic class belonging confirmation. Moreover, the knowledge structure reasoning results are visualized using ITM Toolkit. A prototype system of visual knowledge structure reasoning has been implemented and applied to the massive knowledge organization, management and service for education.

  • A Compound Parallel Btree for High Scalability and Availability on Chained Declustering Parallel Systems

    Min LUO  Akitsugu WATANABE  Haruo YOKOTA  

     
    PAPER

      Vol:
    E94-D No:3
      Page(s):
    587-601

    Scalability and availability are the key features of parallel database systems. To realize scalability, many dynamic load-balancing methods with data placement and parallel index structures on shared-nothing parallel infrastructure have been proposed. Data migration with range-partitioned placement using a parallel Btree is one solution. The combination of range partitioning and chained declustered replicas provides high availability (HA) while preserving scalability. However, independent treatment of the primary and backup data in each node requires long failover times. We propose a novel method for the compound treatment of chained declustered replicas using a parallel Btree, termed the Fat-Btree. In the proposed method, a single Fat-Btree provides access paths to both the primary and backup data of all processor elements (PEs), which greatly reduces failover time. Moreover, these access paths overlap between two neighboring PEs, which enables dynamic load balancing without physical data migration by dynamically redirecting the access paths. In addition, this compound treatment improves memory space utilization to enable index processing with good scalability. Experiments using PostgreSQL on a 160-node PC cluster demonstrate the effectiveness of the high scalability and availability of our proposed method.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.