1-3hit |
Satoshi YAGITANI Mitsunori OZAKI Hirotsugu KOJIMA
A sensor network consisting of a number of palm-sized nodes with small electric and magnetic sensors has been proposed to monitor local electromagnetic activities in space plasmas. In the present study, a compact loop antenna system is designed and fabricated for use in sensor nodes that can capture magnetic vector fields from ELF to MF frequencies. The performance of the developed system is shown to be sufficient to allow measurement of the magnetic field activity around artificial structures in addition to intense natural plasma waves in geospace.
Mitsunori OZAKI Satoshi YAGITANI Kazuhisa MIYAZAKI Isamu NAGANO
Using a single-site lightning location technique, a new portable lightning location system is developed. We incorporate an attitude detection technique using inertial sensors to detect an accurate electromagnetic field vector of sferics by palm-sized electromagnetic sensors which can have arbitrary attitude. The present paper describes the concept and the performance of the developed prototype of the portable system.
Tu NGUYEN VAN Satoshi YAGITANI Kensuke SHIMIZU Shinjiro NISHI Mitsunori OZAKI Tomohiko IMACHI
A metasurface absorber capable of monitoring two-dimensional (2-d) electric field distributions has been developed, where a matrix of lumped resistors between surface patches formed on a mushroom-type structure works as a 2-d array of short dipole sensors. In this paper absorption and reflection of a spherical wave incident on the metasurface absorber are analyzed by numerical computation by the plane-wave spectrum (PWS) technique using 2-d Fourier analysis. The electromagnetic field of the spherical wave incident on the absorber surface is expanded into a large number of plane waves, for each of which the TE and TM reflection and absorption coefficients are applied. Then by synthesizing all the plane wave fields we obtain the spatial distributions of reflected and absorbed fields. The detailed formulation of the computation is described, and the computed field distributions are compared with those obtained by simulation and actual measurement when the spherical wave from a dipole is illuminated onto a metasurface absorber. It is demonstrated that the PWS technique is effective and efficient in obtaining the accurate field distributions of the spherical wave on and around the absorber. This is useful for evaluating the performance of the metasurface absorber to absorb and measure the spherical wave field distributions around an EM source.