1-2hit |
Aya COMUTA Mitsuru KAWAZOE Tetsuya TAKAHASHI Isamu YOSHIZAWA
An explicit construction of pairing-friendly hyperelliptic curves with ordinary Jacobians was firstly given by D. Freeman for the genus two case. In this paper, we give an explicit construction of pairing-friendly hyperelliptic curves of genus two and four with ordinary Jacobians based on the closed formulae for the order of the Jacobian of special hyperelliptic curves. For the case of genus two, we prove the closed formula for curves of type y2=x5+c. By using the formula, we develop an analogue of the Cocks-Pinch method for curves of type y2=x5+c. For the case of genus four, we also develop an analogue of the Cocks-Pinch method for curves of type y2=x9+cx. In particular, we construct the first examples of pairing-friendly hyperelliptic curves of genus four with ordinary Jacobians.
Makoto SUGITA Mitsuru KAWAZOE Hideki IMAI
We clarify a relation between the XL algorithm and known Grobner basis algorithms. The XL algorithm was proposed to be a more efficient algorithm to solve a system of algebraic equations under a special condition, without calculating a whole Grobner basis. But in our result, it is shown that to solve a system of algebraic equations with a special condition under which the XL algorithm works is equivalent to calculate the reduced Grobner basis of the ideal associated with the system. Moreover we show that the XL algorithm is a Grobner basis algorithm which can be represented as a redundant variant of a known Grobner basis algorithm F4.