Author Search Result

[Author] Motohiro TANNO(9hit)

1-9hit
  • Efficient Random Access Channel Transmission Method Using Packet Retransmission According to QoS

    Yousuke IIZUKA  Motohiro TANNO  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-A No:7
      Page(s):
    1669-1675

    This paper proposes an efficient random access channel (RACH) transmission method that utilizes soft-combined consecutively retransmitted message data packets according to the Quality of Service (QoS) requirements for broadband multi-carrier/DS-CDMA (MC/DS-CDMA) in the reverse link. In the proposed scheme, the relative transmission power of a message from that of a successfully detected preamble for non-real time (NRT) type traffic data is significantly reduced by soft-combining several retransmitted message data packets thanks to time diversity since the delay requirement is relaxed. Meanwhile, for real time (RT) type traffic data, the relative transmission power of the message from that of the detected preamble is increased in order to reduce the packet error rate with a limited number of retransmissions. Simulation results elucidate that the total required average received signal energy per bit-to-background noise power spectrum density ratio (Eb/N0) for error-free transmission with time diversity for NRT type traffic data is reduced by more than 2 dB compared to that for conventional RACH without the relative transmission power control for a wide rage of fading maximum Doppler frequencies.

  • Physical Channel Structures and Cell Search Method for Scalable Bandwidth for OFDM Radio Access in Evolved UTRA Downlink

    Motohiro TANNO  Kenichi HIGUCHI  Satoshi NAGATA  Yoshihisa KISHIYAMA  Mamoru SAWAHASHI  

     
    PAPER-Terrestrial Radio Communications

      Vol:
    E90-B No:12
      Page(s):
    3622-3631

    This paper proposes physical channel structures and a cell search method for OFDM based radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) downlink, which supports multiple scalable transmission bandwidths from 1.25 to 20 MHz. In the proposed physical channel structures, the central sub-carrier of the OFDM signal is located on the frequency satisfying the 200-kHz raster condition regardless of the transmission bandwidth of the cell site. Moreover, the synchronization channel (SCH) and broadcast channel (BCH), which are necessary for cell search, are transmitted in the central part of the entire transmission spectrum with a fixed bandwidth. In the proposed cell search method, a user equipment (UE) acquires the target cell in the cell search process in the initial or connected mode employing the SCH and possibly the reference signal, which are transmitted in the central part of the given transmission bandwidth. After detecting the target cell, the UE decodes the common control information through the BCH, which is transmitted at the same frequency as the SCH, and identifies the transmission bandwidth of the cell to be connected. Computer simulations show the fast cell search performance made possible by using the proposed SCH structure and the cell search method.

  • Three-Step Cell Search Algorithm Exploiting Common Pilot Channel for OFCDM Broadband Wireless Access

    Motohiro TANNO  Hiroyuki ATARASHI  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E86-B No:1
      Page(s):
    325-334

    This paper proposes a three-step cell search algorithm that utilizes only the common pilot channel (CPICH) in the forward link and employs spreading by a combination of a cell-specific scrambling code (CSSC) and an orthogonal short code for Orthogonal Frequency and Code Division Multiplexing (OFCDM) broadband packet wireless access. In the proposed cell search algorithm, the OFCDM symbol timing, i.e., Fast Fourier Transform (FFT) window timing, is estimated by detecting the guard interval timing in the first step. Then, in the second step, the frame timing and CSSC group are simultaneously detected by taking the correlation of the CPICH based on the property yielded by shifting the CSSC phase in the frequency domain. Finally, the CSSC within the group is identified in the third step. The most prominent feature of the proposed cell search algorithm is that it does not employ the conventional synchronization channel (SCH), which is exclusively used for the cell search. Computer simulation results elucidate that when the transmission power ratio of the CPICH to one code channel of the traffic channel (TCH) is 12 dB, the proposed cell search method achieves faster cell search time performance compared to the conventional method using the SCH with the transmission power ratio of the SCH to one code channel of the TCH of 6 dB. Furthermore, the results show that it can accomplish the cell search within 1.7 msec at 95% of the locations in a 12-path Rayleigh fading channel with the maximum Doppler frequency of 80 Hz and the r.m.s. delay spread of 0.32 µs.

  • Performance Evaluations of Transmit Diversity Schemes with Synchronization Signals for LTE Downlink

    Satoshi NAGATA  Yoshihisa KISHIYAMA  Motohiro TANNO  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Vol:
    E98-B No:6
      Page(s):
    1110-1124

    This paper presents the effect of transmit diversity on the initial and neighboring cell search time performance and the most appropriate transmit diversity scheme based on system-level simulations employing synchronization signals for the Long Term Evolution (LTE) downlink. The synchronization signals including the primary synchronization signal (PSS) and secondary synchronization signal (SSS) are the first physical channel that a set of user equipment (UE) acquires at the initial radio-link connection. The transmit diversity candidates assumed in the paper are Precoding Vector Switching (PVS), Cyclic Delay Diversity (CDD), Time Switched Transmit Diversity (TSTD), and Frequency Switched Transmit Diversity (FSTD), which are all suitable for simple blind detection at a UE. System-level simulation results show that transmit diversity is effective in improving the detection probabilities of the received PSS timing and PSS sequence in the first step and those of the SSS sequence and radio frame timing in the second step of the cell search process. We also show that PVS achieves fast cell search time performance of less than approximately 20ms at the location probability of 90% regardless of the inter-cell site distance up to 10km. Hence, we conclude that PVS is the best transmit diversity scheme for the synchronization signals from the viewpoint of decreasing the initial and neighboring cell search times.

  • Cell Search Time Comparison Using Hierarchical and Non-hierarchical Synchronization Channels in OFDM Based Evolved UTRA Downlink

    Satoshi NAGATA  Motohiro TANNO  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1608-1618

    This paper presents a comparison of hierarchical and non-hierarchical synchronization channel (SCH) structures in terms of the initial cell search time and neighboring cell search time in order to establish the optimum SCH structure in the Evolved UTRA downlink. Computer simulation results show that in a 19-cell configuration, the cell search time at 90% in the cumulative distribution function (CDF) using the hierarchical SCH structure is less than half that using the non-hierarchical SCH structure in a neighboring cell search under low signal-to-interference plus noise power ratio (SINR) conditions, although both structures achieve almost the same cell search time in the initial cell search. This is due to the cross-correlation based SCH symbol timing detection in the hierarchical SCH structure, which is affected less by noise than the auto-correlation based detection in the non-hierarchical SCH structure. Thus, we conclude that the hierarchical SCH structure is superior to the non-hierarchical SCH structure based on the cell search time performance especially in the neighboring cell search.

  • Performance Evaluations of MBMS Signals Using Transmit/Receiver Diversity with SFN in OFDM Based Evolved UTRA Downlink

    Akihito MORIMOTO  Yoshihisa KISHIYAMA  Motohiro TANNO  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1649-1659

    This paper investigates the best cell-common reference signal (RS) structure and transmit diversity scheme for Multimedia Broadcast Multicast Service (MBMS) signals considering frequency diversity in a single-frequency network (SFN) in the OFDM based Evolved UTRA downlink. Link-level simulation results show that cyclic delay diversity (CDD) is the most promising transmit diversity scheme for the MBMS signals considering the RS overhead. It is also elucidated that the required average received signal energy per symbol-to-noise power spectrum density ratio (Es/N0) using CDD is reduced by approximately 0.5 dB even though the MBMS signal obtains a sufficient frequency diversity gain in SFN operation. Furthermore, we clarify the achievable data rate for the MBMS signal at the cell edge of the centered MBMS cell that satisfies the required block error rate (BLER) using two-antenna transmit CDD and diversity reception by system-level simulation. Then, the simulation results show that the offered data rates with the required BLER of less than 10-2 at 95% coverage are 0.211 (0.17), 0.243 (0.196), 1.168 (1.084), and 2.754 (2.754) bps/Hz with the number of cells providing MBMS, NMBMS = 1, 3, 21, and 57, respectively, employing transmit CDD with two antennas (single-antenna transmission) for ISD = 500 m.

  • Layered OFDMA and Its Radio Access Techniques for LTE-Advanced

    Motohiro TANNO  Yoshihisa KISHIYAMA  Hidekazu TAOKA  Nobuhiko MIKI  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1743-1750

    This paper proposes applying the Layered Orthogonal Frequency Division Multiple Access (OFDMA) radio access scheme and its radio access techniques to LTE (Long-Term Evolution)-Advanced to satisfy its system requirements, which are much stricter than those of the Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access (UTRA) and UMTS Terrestrial Radio Access Network (UTRAN). Layered OFDMA comprises layered transmission bandwidth assignment (bandwidth is assigned to match the required data rate), a layered control signaling structure, and support for layered environments for both the downlink and uplink. Especially in the uplink, an adaptive multi-access scheme with hybrid single-carrier and multicarrier based radio access is applied. Layered OFDMA radio access will support all the functionalities specified in Release 8 LTE and later enhancements. Key radio access techniques such as fast inter-cell radio resource management that takes advantage of remote radio equipment (RRE) so as to realize inter-cell orthogonality, multi-antenna transmission with more antennas, and coverage enhancing techniques are used to achieve a high level of capacity and cell-edge spectrum efficiency.

  • Experiments on Handover Using Combination of Bicast and Forwarding of IP Packet for Future IP-Based RANs

    Motohiro TANNO  Akihito MORIMOTO  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1735-1742

    This paper proposes a handover method that uses a combination of bicast and forwarding (BIFO) of IP packets to achieve a short handover delay. BIFO achieves a lower amount of IP packet traffic in the backhaul for future IP-based radio access networks (RANs) than the bicast only method. To validate the effect of the proposed BIFO, we implement prototype experimental equipment comprising a RAN_access router (RAN_AR), Node Bs associated with a radio control server (RCS), and user equipment (UE) including a controller. The experimental results show that BIFO achieves a shorter handover delay than the conventional bicast method or forwarding method by taking advantage of the respective merits of bicast and forwarding. The results also confirm that BIFO achieves the handover delay time in the control plane of approximately 10-20 msec.

  • Fast Cell Search Algorithm for Overlay System with Cellular and Isolated Cells in Forward Link for OFCDM Broadband Wireless Access

    Motohiro TANNO  Hiroyuki ATARASHI  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER-Cell Selection

      Vol:
    E88-B No:1
      Page(s):
    159-169

    This paper proposes a new cell-specific scrambling code (CSSC) assignment method and a fast cell search algorithm in the forward link for Orthogonal Frequency and Code Division Multiplexing (OFCDM) wireless access that are suitable for a system incorporating coexisting isolated and cellular cells. In the proposed method, one or some CSSC groups and thereby the CSSCs belonging to the CSSC groups are exclusively assigned to isolated cells. By detecting the best CSSC assigned to an isolated cell with higher priority than the cellular cells, the best cell including the isolated cell obtaining the minimum path loss can be detected far faster than by using the conventional cell search method, which employs uniform CSSC assignment. Computer simulation results show that by using the proposed cell search method together with the exclusive CSSC assignment to the isolated cells, the isolated-cell detection probability of approximately 90% is achieved at the cell boundary after the cell search time of 10 msec, while corresponding detection probability using conventional CSSC assignment is approximately 80% without notifying the user equipment of the cell type and its CSSC information of the surrounding cells via the broadcast channel, at the average received signal energy per bit-to-noise power spectrum density ratio (Eb/N0) of 10 dB for the common pilot channel (CPICH) in the cellular cells, when the transmission power ratio of the CPICH to the packet data channel (PDCH) for a one-code channel is RCPICH = 9 dB in a 20-cell layout model.

FlyerIEICE has prepared a flyer regarding multilingual services. Please use the one in your native language.