1-3hit |
Kyounghee LEE Myungchul KIM Samuel T. CHANSON Chansu YU Jonghyun LEE
Existing research related to RSVP with mobility support has mainly focused on maintaining reservation state along the routing path, which changes continuously with the movements of mobile host (MH), without much overhead and delay. However, problems such as deepening RSVP's inherent scalability problem and requiring significant changes in the existing network infrastructure have not been adequately addressed. In this paper, we propose a new approach, known as Concatenation and Optimization for Reservation Path (CORP), which addresses these issues. In CORP, each BS pre-establishes pseudo reservations to its neighboring BSs in anticipation of the MH's movement. When the MH moves into another wireless cell, the associated pseudo reservation is activated and concatenated to the existing RSVP session to guarantee continuous QoS support. Because a pseudo reservation is recognized as a normal RSVP session by intermediate routers, little change is required in the current Internet environment to support both movements within a single routing domain and between two different routing domains. CORP also dynamically optimizes the extended reservation path to avoid the infinite path extension problem. Multicast addressing is used to further reduce resource consumption in the optimization process. The experimental results of the CORP implementation demonstrate that it significantly reduces the delay and overhead caused by handoffs compared to the case of establishing a new RSVP session. The improvement increases as the distance between the MH and its correspondent host (CH) grows.
Sooyong LEE Myungchul KIM Sungwon KANG Ben LEE Kyunghee LEE Soonuk SEOL
Providing seamless QoS guarantees for multimedia services is one of the most critical requirements in the mobile Internet. However, the effects of host mobility make it difficult to provide such services. The next steps in signaling (NSIS) was proposed by the IETF as a new signaling protocol, but it fails to address some mobility issues. This paper proposes a new QoS NSIS signaling layer protocol (QoS NSLP) using a cross-layer design that supports mobility. Our approach is based on the advance discovery of a crossover node (CRN) located at the crossing point between a current and a new signaling path. The CRN then proactively reserves network resources along the new path that will be used after handoff. This proactive reservation significantly reduces the session reestablishment delay and resolves the related mobility issues in NSIS. Only a few amendments to the current NSIS protocol are needed to realize our approach. The experimental results and simulation study demonstrate that our approach considerably enhances the current NSIS in terms of QoS performance factors and network resource usage.
Myungchul KIM Jaehwi SHIN Samuel T. CHANSON Sungwon KANG
This paper studies the problem of testing concurrent systems considered as blackboxes and specified using asynchronous Communicating Finite State Machines. We present an approach to derive test cases for concurrent systems in a succinct and formal way. The approach addresses the state space explosion problem by introducing a causality relation model and the concept of logical time to express true concurrency and describe timing constraints on events. The conformance relation between test cases and trace observed from the real system is defined, and a new test architecture as well as a test case application is presented according to the conformance relation defined. To improve verdict capability of test cases, the approach is enhanced by relaxing the unit-time assumption to any natural number. And a computationally efficient algorithm for the enhanced approach is presented and the algorithm is evaluated in terms of computational efficiency and verdict capability. Finally the approach is generalized to describe timing constraints by any real numbers.